• Title/Summary/Keyword: climate(氣候)

Search Result 4,743, Processing Time 0.033 seconds

Prediction of Full Blooming Dates of Robinia pseudoacacia using Chill Days Model and Flowering Data from 30 Sites in South Korea over 12 Years (지난 12년간의 전국 30개 지점의 아까시나무 개화 데이터와 순차휴면모델을 활용한 아까시나무의 만개일 예측)

  • Kim, Sukyung;Kim, Taekyung;Lim, Hyemin;Yoon, Sukhee;Jang, Geun-Chang;Won, Myoungsoo;Lim, Jonghwan;Kim, Hyun Seok
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2019.08a
    • /
    • pp.270-271
    • /
    • 2019
  • PDF

Examination of Tourism Climatic Conditions for Chiaksan National Park Analyzing Tourism Climate Index (관광기후지수(Tourism Climate Index)를 이용한 치악산 국립공원의 관광기후환경에 관한 연구)

  • Park, Changyong;Kim, Namjo;Kim, Sangtae;Choi, Youngeun
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.779-793
    • /
    • 2014
  • This study was aimed at examining the recent and the future changes of tourism climatic conditions for Chiaksan national park using TCI(Tourism Climate Index). The distribution type of daily mean of TCI showed the bimodal-shoulder peaks for all periods of the past and the future. Therefore, Chiaksan national park showed affordable climate of touring in spring and autumn due to temperature and relative humidity constituting Cid and Cia. Summer tourism climatic conditions of Chiaksan national park has become worse recently. In the future, these trends are projected more stronger. Also, the lowest TCI in the year is projected to shift from winter to summer due to a decrease of Cid.

  • PDF

Water Balance Change of Watershed by Climate Change (기후변화에 따른 유역의 물수지 변화)

  • Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.405-420
    • /
    • 2007
  • This study is intended to analyze and evaluate the effects of Seomjingang Dam and Soyanggang Dam Catchment on water circulation in order to examine water balance change of watershed by climate change. Obviously, air temperature and precipitation showed a gradually increasing trend for the past 30 years; evapotranspiration vary in areas and increasing annual average air temperature is not always proportional to increasing evapotranspiration. Based on Penman-FAO24, climatic water balance methods and measured values are shown to be significantly related with each other and to be available in Korea. It is certainly recognized that increasing annual rainfall volume leads to increasing annual runoff depth; for fluctuation in annual runoff rates, there are some difference in changes in measured values and calculated values. It is presumably early to determine that climate changes has a significant effect on runoff characteristic at dam catchment. It is widely known that climate changes are expected to cause many difficulties in water resources and disaster management. To take appropriate measures, deeper understanding is necessary for climatological conditions and variability of hydrology and to have more careful prospection and to accumulate highly reliable knowledge would be prerequisites for hydrometric network.

Insolation Modeling using Climate and Geo-Spatial Elements (기후요소와 지형 공간요소를 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Han, Ki-Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.79-86
    • /
    • 2010
  • This research is a thing about reverse operation about the solar power for location decision and increasing efficiency of the solar power generation equipments. The purpose of this research is reverse operation about the amount of sunshine using the climate and spatial elements. Following the result of correlation analysis, the wind-speed and cloud-amount factor are excluded, because the correlation and significance coefficients are out of value. Each outcome of regression analysis using the other four climate elements, and regression analysis using spatial elements is what the amount of sunshine and the solar altitude are the most influence to the insolation-modeling. Doing the regression analysis based on the precedent result make the result that climate elements have bigger coefficient of regression than spatial elements. This outcome means the climate elements are more influence than spatial elements.

Effect of Regional Climate Change Projected by RCP Scenarios on the Efficiency of Low Impact Development Applications (RCP 시나리오에 따른 지역의 기후변화가 저영향개발 기법 효과에 미치는 영향)

  • Jeon, Ji-Hong;Kim, Tae-Dong;Choi, Donghyuk
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.409-417
    • /
    • 2018
  • This study elicited the necessity of considering regional climate change on Low Impact Development (LID) application by evaluating its effect on LID efficiency. The relationship between climate change factors and LID efficiency was evaluated with Representative Concentration Pathway (RCP) showing the increase of annual precipitation and representative evapotranspiration. Simply lowering lawn surface (LID3), a practical option to increase retention and infiltration effect, demonstrated hydrological improvement above two conventional options, bioretention with green roof (LID1) and bioretention only (LID2). High runoff reductions of applied options at RCP 4.5, supposing taking efforts for mitigating green house gases, revealed that climate change countermeasures were preferable to LID efficiencies. The increase of precipitation had more influence in hydrological change than that of reference evapotranspiration.

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models (전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성)

  • Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.345-363
    • /
    • 2003
  • From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.

Analysis of Extreme Weather Characteristics Change in the Gangwon Province Using ETCCDI Indices (Expert Team on Climate Change Detection and Indices (ETCCDI)를 이용한 강원지역 극한기상특성의 변화 분석)

  • Kang, Keon Kuk;Lee, Dong Seop;Hwang, Seok Hwan;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1107-1119
    • /
    • 2014
  • Interesting in abnormal climate is currently growing because of climate change. With this, an increasing number of people continue to show concern over the negative effects of such changes. In Korea, the annual average rainfall amount increased to about 19% from 1,155 mm in the 1910s to 1,375 mm in the 2000s. By the end of the 21st century, it has been projected that rainfall will further increase to about 17%. In particular, the 10-year frequency of localized heavy rain of more than 100-mm rainfall per day reached 385 days in the last 10 years. As such, it increased 1.7 times from 222 in the 1970s-80s. The extreme events caused by climate change is thus reported as having exacerbated over the years. Gangwon-province will suffer more from climate change than any other region in Korea because of its mostly mountainous terrain. It is a special region with both mountainous and oceanic climates divided alongside the eastern and western regions of the Taebaek Mountain Range. As such, this paper try to quantify using ETCCDI (Expert Team on Climate Change Detection and Indices) the recent climate changes in this region.

A Comparison of the Changes of Greenhouse Gas Emissions to the Develop Country-Specific Emission Factors and Scaling Factors in Agricultural Sector (농업부문 국가 고유 배출계수와 보정계수 개발에 따른 온실가스 배출량 변화 비교)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • Greenhouse gases (GHGs) from agricultural sector were categorized in a guideline book from Intergovernmental Panel on Climate Change (IPCC) as methane from rice paddy fields and nitrous oxide from agricultural soils. In general, GHG emissions were calculated by multiplying the activity data by emission factor. Tier 1 methodology uses IPCC default factors and Tier 2 uses country specific emission factors (CS). The CS and Scaling factors (SF) had been developed by NAAS (National Academy of Agricultural Science) projects from 2009 to 2012 to estimate how the advanced emissions. The purpose of this study was to compare GHG emissions calculated from IPCC default factors and NAAS CS and SF of agricultural sector in Korea. Methane emissions using CS and SF in rice paddy field was about 79% higher than those using IPCC default factors. In the agricultural soils, nitrous oxide emissions using CS from the 5 crops were about 40% lower than those using IPCC default. Except those 5 crops, approximately up to 52% lower emissions were calculated using CS compared to those using IPCC default factors. The total GHG emissions using CS and SF were about 33% higher than those using Tier 1 method by IPCC default factors.

Characterization of Greenhouse Gas by Emission Regions and Sectors using GHG-CAPSS(2006) (GHG-CAPSS를 이용한 지역별, 부문별 온실가스 배출 특성 분석(2006))

  • Lee, Sue-Been;Lim, Jae-Hyun;Lyu, Young-Sook;Yeo, So-Young;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • While increased use of energy and fossil fuel in the recent years could worsen air quality and climate change, only few studies have been conducted on estimation of greenhouse gas emissions and characterization of emission types by sectors and regions in Korea. In this study, greenhouse gases emissions based on resions(Si, Gun, Gu) and emitted sectors(industry, transport, cemmercial and institutional, residential, waste, agriculture, others) were investigated using GHG-CAPSS(Greenhouse GasClean Air Policy Support System) developed to support to national and regional greenhouse gases reduction strategies. GHG-CAPSS follows IPCC(Intergovernmental Panel on Climate Change) Guideline methodology to categorize the emission sources and estimation of greenhouse gases using bottom-up approach. Estimated total greenhouse gases emissions were 588,011 thousand tons as $CO_2$ equivalent. Industry(50.1%) sector exhibited the highest portion followed by transport(17.6%), commercial and institutional(12.6%), residential(12.6%), waste(2.6%), agriculture(2.5%). Based on regional estimation, Gyeonggi(14.9%) demonstrated the highest emitted greenhouse gases among big cities followed by Jeonnam(12.4%), Gyeongbuk(11.0%), Ulsan(9.2%) and Seoul(8.9%).

Keyword Network Analysis of Trends in Research on Climate Change Education (키워드 네트워크 분석을 활용한 기후변화 교육 관련 연구동향 분석)

  • Kim, Soon Shik;Lee, Sang Gyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.3
    • /
    • pp.226-237
    • /
    • 2020
  • The purpose of the research is to analyze research trends related to climate change education by network analysis based on keywords extracted from the research title. For this purpose, 62 papers were selected from Korean Citation Index(KCI) journals published from 2011 to 2020 using such keywords as "climate change" and "climate change education" in the Research Information Sharing Service. The analysis procedure consisted of selection of analysis papers, keyword extraction and purification, and keyword network analysis and visualization. Textom, Ucinet 6.0, and NetDraw were used to analyze the frequency, degree centrality, and betweenness centrality. The results of the research showed that, first, Early 'Energy and Climate Change Education' had the highest frequency of papers examining climate change education. Second, the keywords/phrases that appeared most frequently in research on climate change education were "program" "energy," "analysis," "elementary school," "elementary school," "elementary school students," "development," and "impact." Third, the analysis of the centrality of betweenness centrality showed that the index of 'program', 'primary students' and 'primary schools' were the highest, and the largest group was 'development and effect of teaching and learning programs'. Based on these results, it was concluded that future research on climate change education needs to be examined in further detail and expanded into more specific areas.