• Title/Summary/Keyword: clickstream

Search Result 16, Processing Time 0.036 seconds

Design and Implementation of Web Server for Analyzing Clickstream (클릭스트림 분석을 위한 웹 서버 시스템의 설계 및 구현)

  • Kang, Mi-Jung;Jeong, Ok-Ran;Cho, Dong-Sub
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.945-954
    • /
    • 2002
  • Clickstream is the information which demonstrate users' path through web sites. Analysis of clickstream shows how web sites are navigated and used by users. Clickstream of online web sites contains effective information of web marketing and to offers usefully personalized services to users, and helps us understand how users find web sites, what products they see, and what products they purchase. In this paper, we present an extended web log system that add to module of collection of clickstream to understand users' behavior patterns In web sites. This system offers the users clickstream information to database which can then analyze it with ease. Using ADO technology in store of database constructs extended web log server system. The process of making clickstreaming into database can facilitate analysis of various user patterns and generates aggregate profiles to offer personalized web service. In particular, our results indicate that by using the users' clickstream. We can achieve effective personalization of web sites.

Effects of Product Recommendations on Customer Behavior in e-Commerce : An Empirical Analysis of Online Bookstore Clickstream Data (클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석)

  • Lee, Hong-Joo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.59-76
    • /
    • 2008
  • Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

Can We Identify Trip Purpose from a Clickstream Data?

  • Choe, Yeongbae
    • Journal of Smart Tourism
    • /
    • v.2 no.2
    • /
    • pp.15-19
    • /
    • 2022
  • Destination marketing organizations (DMOs) utilize the official website for marketing and promotional purposes, while tourists often navigate through the official website to gather necessary information for their upcoming trips. With the advancement of business analytics, DMOs may need to exploit the clickstream data generated through their official website to develop more suitable and persuasive strategic marketing and promotional activities. As such, the primary objective of the current study is to show whether clickstream data can successfully identify the trip purposes of a particular user. Using a latent class analysis and multinomial logistic regression, this study found the meaningful and statistically significant variations in webpage visits among different trip purpose groups (e.g., weekend getaways, day-trippers, and other purposes). The findings of this study would provide a foundation for more data-centric destination marketing and management practice.

클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석

  • Lee, Hong-Ju
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.135-140
    • /
    • 2008
  • Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

  • PDF

Purchase Prediction by Analyzing Users' Online Behaviors Using Machine Learning and Information Theory Approaches

  • Kim, Minsung;Im, Il;Han, Sangman
    • Asia pacific journal of information systems
    • /
    • v.26 no.1
    • /
    • pp.66-79
    • /
    • 2016
  • The availability of detailed data on customers' online behaviors and advances in big data analysis techniques enable us to predict consumer behaviors. In the past, researchers have built purchase prediction models by analyzing clickstream data; however, these clickstream-based prediction models have had several limitations. In this study, we propose a new method for purchase prediction that combines information theory with machine learning techniques. Clickstreams from 5,000 panel members and data on their purchases of electronics, fashion, and cosmetics products were analyzed. Clickstreams were summarized using the 'entropy' concept from information theory, while 'random forests' method was applied to build prediction models. The results show that prediction accuracy of this new method ranges from 0.56 to 0.83, which is a significant improvement over values for clickstream-based prediction models presented in the past. The results indicate further that consumers' information search behaviors differ significantly across product categories.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

How Content Affects Clicks: A Dynamic Model of Online Content Consumption

  • Inyoung Chae;Da Young Kim
    • Asia pacific journal of information systems
    • /
    • v.31 no.4
    • /
    • pp.606-632
    • /
    • 2021
  • With many consumers being exposed to news via social media platforms, news organizations are challenged to attract visitors and generate revenue during visits to their websites. They therefore need detailed information on how to write articles and headlines to increase visitors' engagement with the content to drive advertising revenues. For those news organizations whose business model depends mainly on advertisements, rather than subscriptions, it is particularly crucial to understand what makes the website attractive to their visitors, what drives users to stay on the website, and what factors affect a user's exit decision. The current research examines individual news consumers' choices to find patterns of increase or decrease in user engagement relative to a variety of topics, as well as to the mood or tone of the content. Using clickstream data from a major news organization, the authors develop a user-level dynamic model of clickstream behavior that takes into account the content of both headlines and stories that visitors read. The authors find that readers appear to exhibit state dependence in the tone of the articles that they read. They also show how the topics expressed in headlines can affect the amount of content readers consume when visiting the news organization to a much larger degree than the topics expressed in the content of the article. Online publishers can make use of such findings to present visitors with content that is likely to maintain and/or increase their engagement and consequently drive advertising revenue.

First Mover Advantage in the Internet Marketplace (인터넷 경쟁환경에서의 선발자 우위에 대한 실증적 연구)

  • Lee, Sang-Myung;Choi, Jeong-Il;Lee, Kwon-Chul
    • Journal of Information Technology Services
    • /
    • v.7 no.2
    • /
    • pp.59-75
    • /
    • 2008
  • Despite our extensive understanding on the Internet business and widely understood first-mover advantage. it is not clearly answered yet whether an internet firm can enjoy the first-mover advantage in the new environment of the Internet. This is mainly because the Internet marketplace itself has a complex combination of various business models, ranging from a simple channel-extension to a whole new business model. Based on new theoretical development on the first-mover advantage, we empirically test whether being an early mover in the Internet environment materially affects firm performance, using clickstream data from Korea where broadband Internet installation is ranked as top among OECD countries. Our results show the effectiveness of first-mover advantage on the web does not exist, regardless of its business model and competitive environment. This result expands our understandings on the e-business, not to mention of the real feature of first-mover advantage.

Predicting Session Conversion on E-commerce: A Deep Learning-based Multimodal Fusion Approach

  • Minsu Kim;Woosik Shin;SeongBeom Kim;Hee-Woong Kim
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.737-767
    • /
    • 2023
  • With the availability of big customer data and advances in machine learning techniques, the prediction of customer behavior at the session-level has attracted considerable attention from marketing practitioners and scholars. This study aims to predict customer purchase conversion at the session-level by employing customer profile, transaction, and clickstream data. For this purpose, we develop a multimodal deep learning fusion model with dynamic and static features (i.e., DS-fusion). Specifically, we base page views within focal visist and recency, frequency, monetary value, and clumpiness (RFMC) for dynamic and static features, respectively, to comprehensively capture customer characteristics for buying behaviors. Our model with deep learning architectures combines these features for conversion prediction. We validate the proposed model using real-world e-commerce data. The experimental results reveal that our model outperforms unimodal classifiers with each feature and the classical machine learning models with dynamic and static features, including random forest and logistic regression. In this regard, this study sheds light on the promise of the machine learning approach with the complementary method for different modalities in predicting customer behaviors.

Gender Differences in Online Shopping Behavior

  • Park, Joo-Young;Lee, Byung-Tae
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.382-387
    • /
    • 2007
  • Since the emergence of Internet service, the revenue from e-commerce has been exponentially growing. Especially, the consumption by men in online retailers is distinctively different from that in traditional bricks-and-mortar retailers. Facing these interesting phenomena, researchers as well as businesses have begun to pay attention to e-commerce and online consumers. However, research on consumer behaviors in the online channel has not made a careful investigation into gender behavioral differences in the online channel. Therefore, we provide a profound understanding of gender differences in online shopping behavior compared to those in offline shopping behaviors. Through our findings from this research, we draw researchers' attention to consumer behavior in the online channel, gender differences in online shopping. Also, we suggest practical implications to online marketers using data collected from one of the major online retailers.

  • PDF