• Title/Summary/Keyword: cleavage.

Search Result 2,074, Processing Time 0.026 seconds

MicroRNA-directed cleavage of targets: mechanism and experimental approaches

  • Park, June Hyun;Shin, Chanseok
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.417-423
    • /
    • 2014
  • MicroRNAs (miRNAs) are a large family of post-transcriptional regulators, which are 21-24 nt in length and play a role in a wide variety of biological processes in eukaryotes. The past few years have seen rapid progress in our understanding of miRNA biogenesis and the mechanism of action, which commonly entails a combination of target degradation and translational repression. The target degradation mediated by Argonaute-catalyzed endonucleolytic cleavage exerts a significant repressive effect on target mRNA expression, particularly during rapid developmental transitions. This review outlines the current understanding of the mechanistic aspects of this important process and discusses several different experimental approaches to identify miRNA cleavage targets.

Detection of Cleavage Sites on 5S rRNA by Methidiumpropyl-EDTA-Iron(II)

  • Kim, Sang-Bumn;Cho, Bong-Rae;Lee, Young-Hoon;Park, In-Won
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.133-136
    • /
    • 1996
  • The affinity cleavage reagent Methidiumpropyl-EDTA-Iron(II) is applied to the structural analysis of 5S rRNA. Analysis of cleavage sites induced by MPE-Fe(II) on 5S rRNA shows that MPE intercalates easily between the unstable base pairs or into the bulges, thereby it strongly cuts the nucleosides nearby. The stable helical stems A, B, D and E as well as loop d are weakly cut. Most of the single-stranded loops are not cleaved. Based on the cleavage pattern of the 5S rRNA by MPE-Fe(II) and RNase V1, we suggest that MPE-Fe(II) may be used as a potential chemical probe in searching for the unstable helical regions of RNA, and for the sequences that appear to be involved in folding and distorting 5S rRNA.

  • PDF

Characterization of Benzoate Degradation via ortho-Cleavage by Streptomyces setonii

  • An, Hae-Reun;Park, Hyun-Joo;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.111-114
    • /
    • 2000
  • Streptomyces are widespread in nature and play a very important role in the biosynthesis as well as biodegradation of natural and unnatural aromatic compounds. Both qualitatively and quantitatively through TLC and UV spectrophotometric assays, it was observed that the thermophilic soil bacteria S. setonii (ATCC 39116), which can utilize a benzoate as a sole carbon and energy source in a minimal liquid culture, was not very sensitive to the benzoate concentation and to the culture conditions such as the pH and temperature. The in vitro conversion of a catechol to a cis, cis-muconic acid by a crude S. setonii lysate implies that the aromatic ring cleavage by S. setonii is initiated by a thermostable catechol-1,2-dioxygenase, the key enzyme in the ortho-cleavage pathway of aromatic compound biodegradation. Unlike non-degrading S. lividans, S.setonii was also highly resistant to other similar hazardous aromatic compounds, exhibiting almost no adverse effect on its growth in a complex liquid culture.

  • PDF

Oxidative damage of DNA induced by the reaction of methylglyoxal with lysine in the presence of ferritin

  • An, Sung Ho;Kang, Jung Hoon
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.225-229
    • /
    • 2013
  • Methylglyoxal (MG) is an endogenous metabolite which is present in increased concentrations in diabetics and reacts with amino acids to form advanced glycation end products. In this study, we investigated whether ferritin enhances DNA cleavage by the reaction of MG with lysine. When plasmid DNA was incubated with MG and lysine in the presence of ferritin, DNA strand breakage was increased in a dose-dependent manner. The ferritin/MG/lysine system-mediated DNA cleavage was significantly inhibited by reactive oxygen species (ROS) scavengers. These results indicated that ROS might participate in the ferritin/MG/lysine system-mediated DNA cleavage. Incubation of ferritin with MG and lysine resulted in a time-dependent release of iron ions from the protein molecules. Our data suggest that DNA cleavage caused by the ferritin/MG/lysine system via the generation of ROS by the Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.

Synthesis, Spectroscopic Studies of Binuclear Ruthenium(II) Carbonyl Thiosemicarba-zone Complexes Containing PPh3/AsPh3 as Co-ligands: DNA Binding/Cleavage

  • Sampath, K.;Sathiyaraj, S.;Jayabalakrishnan, C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.367-373
    • /
    • 2013
  • The ruthenium(II) ferrocenyl heterocyclic thiosemicarbazone complexes of the type $[RuCl(CO)(EPh_3)]_2L$ (where E = P/As; L = binucleating monobasic tridendate thiosemicarbazone ligand) have been investigated. Strutural features were determined by analytical and spectral techniques. Binding of these complexes with CT-DNA by absorption spectral study indicates that the ruthenium(II) complexes form adducts with DNA and has intrinsic binding constant in the range of $3.3{\times}10^4-1.2{\times}10^5M^{-1}$. The complexes exhibit a remarkable DNA cleavage activity with CT-DNA in the presence of hydrogen oxide and the cleavage activity depends on dosage.

Free Radical-mediated Ring Expansion Reactions:Endocyclic Cleavage of Cyclopropylcarbinyl Radicals

  • Lee, Pil Ho;Lee, Byeong Cheol;Lee, Gu Yeon;Lee, Chang Hui;Jang, Suk Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.595-603
    • /
    • 2000
  • Ring expansion reactions via endocyclic cleavage of cyclopropylcarbinyl radicals derived from the reaction of [1-benzyloxycarbonylbicyclo[n. 1.O]alk-(n+l)-yl] -1-imidazolethiocarboxylates with tributyltin hydride/AIBN proceeded to produce 3-cycloalkenecarboxylates in good yields. Benzyl (5'-phenoxypentyl) -3-cyclohepten-1 -carboxylate was obtained in 33% yield from the reaction of benzyl 5-methylenebicyclo [4. 1.0]- 1-carboxylates with 4-phenoxybutyl iodide under radical conditions. Selective cleavage of endocyclic bond in cyclopropane to the cyclohexane, results from stabilization of the resultant radical by the carbonyl groups, such as the benzyloxycarbonyl group, which lower the transition state energy for the final cyclopropane cleavage in the ring expansion.