• Title/Summary/Keyword: clean technology

Search Result 2,325, Processing Time 0.032 seconds

A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller (2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.

A Numerical Study on the Flow Uniformity according to Chamber Shapes Used for Test of the Semi-Conductor Chip (반도체 칩 테스트용 챔버 형상에 따른 유동 균일성에 대한 수치적 연구)

  • LEE, DAEGYU;MA, SANG-BUM;KIM, SUNG;KIM, JEONG-YEOL;KANG, CHAEDONG;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.480-488
    • /
    • 2020
  • This study was conducted to improve the flow uniformity inside the chip tester through changing the flow path formation according to the inlet and outlet position of chamber. The internal flow and velocity distributions of the modified chamber models (Cases 1-3) were compared with the reference chamber model through three-dimensional Reynolds-averaged Navier-Stokes equations with k-ε turbulence model. The modified chamber models showed the superior flow uniformity characteristics compared to the reference chamber model. To investigate the flow uniformity in the chip tester, the standard deviation of the velocity was defined and compared. Through the internal flow analysis and assesment of the standard deviation, Case 2 among the test cases including the reference model showed the best flow uniformity generally.

Production of Red Pigments by Monascus purpureus in Submerged Culture

  • Lee, Bum-Kyu;Park, No-Hwan;Piao, Hai-Yon;Chung, Wook-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.341-346
    • /
    • 2001
  • For the purpose of mass producing Monascus red pigments optimum medium composition and environmental conditions were investigated in submerged flask cultures. The optimum carbon and nitrogen sources were determined to be 30g/L of glucose and 1.5 g/L of monosodium glutamate (MSG). Of the three metals examined, Fe$\^$2+/ showed the strongest stimulatory effect on pigment production and some stimulatory effect was also found in Mn$\^$2+/. Optimum pH and agitation speed were determined to be 6.5 and 700 rpm, respectively. Under the optimum culture conditions batch fermentation showed that the maximum biomass yield and specific productivity of red pigments were 0.20 g DCW/g glucose and, 32.5 OD$\sub$500/g DCW$\^$-1/h$\^$-1/, respectively.

  • PDF

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF

Study on the Development System of Rotary Atomizing Painting Equipment and Its Application (회전무화형 도장 기기의 개발체계 및 적용에 관한 연구)

  • Lee, Chan;Cha, SangWon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2002
  • Concurrent development system which includes design, analysis, basic experiment and performance test procedure for rotary atomizing painting equipment was established. Basic design specifications of the equipment parts were determined according to the overall design requirements of painting equipment using conceptual design model. On the basis of derived design specifications, design and analysis procedures was proposed for developing each equipment part. Also proposed are experiment and test methods to investigate the spray and transfer characteristics of designed painting equipment, and their measurement variable, process and evaluation criteria are constructed. The present development system was validated by applying its entire processes to the actual painting equipment.

  • PDF

Design of the Water Bath of a Painting Booth for the Removal of Paint Sludge (도장 슬러지 제거를 위한 도장 부스 수조의 설계)

  • Lee, Chan;Cha, Sang Won;Yoo, Young Don
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.89-100
    • /
    • 2004
  • The optimization for the water bath design and the skimmer installation are conducted to separate floated-sludge from the waste water in a water bath of a painting booth. VOF(volume of fluid) model is used to analyze the flow pattern of sludge-water-air mixture in a water bath. From the results of numerical analysis, the design criteria of the skimmer, the separation plate and the sludge inlet port of a water bath are obtained for effective sludge separation from water in bath. Furthermore, the installation condition of the skimmer immersed in water is optimized to minimize entrained air and pressure loss.

  • PDF

The Stabilization Study of Low-rank Coal by Vapor Adsorption (기상흡착 방법에 의한 저등급 석탄의 안정화 연구)

  • Chun, Dong Hyuk;Park, In Soo;Cho, Wan Taek;Jo, Eun Mi;Kim, Sang Do;Choi, Ho Kyung;Yoo, Jiho;Lim, Jeong Hwan;Rhim, Young Joon;Lee, Sihyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • Vapor adsorption of hydrocarbon has been studied for stabilization after drying low-rank coal. The surface characteristics and the propensity of spontaneous combustion were observed for stabilized coal which was maintained with hydrocarbons as stabilizer at several conditions of residence time and temperature. Surface area of micropores in coal mainly decreased after vapor adsorption. As residence time and temperature of adsorption process increased, the propensity of spontaneous combustion decreased. The type of hydrocarbons did not effect on the propensity of spontaneous combustion. As the analysis results of this work, the amount of hydrocarbon adsorbates required to stabilize dried coal was 0.5 wt% or less of coal, and the stabilizing effect was induced by adsorption of low-molecular-weight hydrocarbons.

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.

Preparation of Synthesis Gas from Methane in a Capacitive rf Discharge (용량성 rf 플라즈마를 이용한 메탄으로부터의 합성가스 제조)

  • Song, Hyung Keun;Choi, Jae-Wook;Lee, Hwaung;Kim, Seung-Soo;Na, Byung-Ki
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.138-144
    • /
    • 2006
  • Conversion of methane to synthesis gas in a capacitive rf plasma at low pressure was experimentally studied. In this plasma, electrons which had sufficient energy-level collided with the molecules of methane or oxygen-containing gas, which were than activated and converted to synthesis gas. The effect of input power, various oxygen-containing gas and composition of the gas mixture were investigated. The conversion of methane reached up to 100%. In all cases, hydrogen and carbon oxide were produced as primary products, and other compounds was generated. The conversion of methane and the yield of hydrogen and carbon oxides were increased with increasing the input power. Depending on the oxygen-containing gases, the composition of synthesis gas was varied.

  • PDF