• Title/Summary/Keyword: classifying space for fibrations

Search Result 2, Processing Time 0.018 seconds

WHEN IS THE CLASSIFYING SPACE FOR ELLIPTIC FIBRATIONS RANK ONE?

  • YAMAGUCHI TOSHIHIRO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.521-525
    • /
    • 2005
  • We give a necessary and sufficient condition of a rationally elliptic space X such that the Dold-Lashof classifying space Baut1X for fibrations with the fiber X is rank one. It is only when X has the rational homotopy type of a sphere or the total space of a spherical fibration over a product of spheres.

A PROSET STRUCTURE INDUCED FROM HOMOTOPY CLASSES OF MAPS AND A CLASSIFICATION OF FIBRATIONS

  • Yamaguchi, Toshihiro;Yokura, Shoji
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.991-1004
    • /
    • 2019
  • Firstly we consider preorders (not necessarily partial orders) on a canonical quotient of the set of the homotopy classes of continuous maps between two spaces induced by a certain equivalence relation ${\sim}_{{\varepsilon}R}$. Secondly we apply it to a classification of orientable fibrations over Y with fibre X. In the classification theorem of J. Stasheff [22] and G. Allaud [3], they use the set $[Y,\;Baut_1X]$ of homotopy classes of continuous maps from Y to $Baut_1X$, which is the classifying space for fibrations with fibre X due to A. Dold and R. Lashof [11]. In this paper we give a classification of fibrations using a preordered set (abbr., proset) structure induced by $[Y,\;Baut_1X]_{{\varepsilon}R}:=[Y,\;Baut_1X]/{\sim}_{{\varepsilon}R}$.