Browse > Article
http://dx.doi.org/10.4134/CKMS.c180326

A PROSET STRUCTURE INDUCED FROM HOMOTOPY CLASSES OF MAPS AND A CLASSIFICATION OF FIBRATIONS  

Yamaguchi, Toshihiro (Faculty of Education Kochi University)
Yokura, Shoji (Department of Mathematics and Computer Science Graduate School of Science and Engineering Kagoshima University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.3, 2019 , pp. 991-1004 More about this Journal
Abstract
Firstly we consider preorders (not necessarily partial orders) on a canonical quotient of the set of the homotopy classes of continuous maps between two spaces induced by a certain equivalence relation ${\sim}_{{\varepsilon}R}$. Secondly we apply it to a classification of orientable fibrations over Y with fibre X. In the classification theorem of J. Stasheff [22] and G. Allaud [3], they use the set $[Y,\;Baut_1X]$ of homotopy classes of continuous maps from Y to $Baut_1X$, which is the classifying space for fibrations with fibre X due to A. Dold and R. Lashof [11]. In this paper we give a classification of fibrations using a preordered set (abbr., proset) structure induced by $[Y,\;Baut_1X]_{{\varepsilon}R}:=[Y,\;Baut_1X]/{\sim}_{{\varepsilon}R}$.
Keywords
homotopy set; proset; orientable fibration; classifying space; rational homotopy; Sullivan minimal model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Alexandroff, Diskrete Raume, Mat. Sb. (N.S.) (1937), 501-518.
2 P. Alexandroff, Combinatorial topology. Vol. 1, 2 and 3, translated from the Russian, reprint of the 1956, 1957 and 1960 translations, Dover Publications, Inc., Mineola, NY, 1998.
3 G. Allaud, On the classification of fiber spaces, Math. Z. 92 (1966), 110-125. https://doi.org/10.1007/BF01312430   DOI
4 F. G. Arenas, Alexandroff spaces, Acta Math. Univ. Comenian. (N.S.) 68 (1999), no. 1, 17-25.
5 J. A. Barmak, Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Mathematics, 2032, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-22003-6
6 K. Borsuk, Sur la notion de diviseur et de multiple des transformations, Bull. Acad. Polon. Sci. Cl. III. 3 (1955), 81-85.
7 J. W. Bruce, T. Gaffney, and A. A. Du Plessis, On left equivalence of map germs, Bull. London Math. Soc. 16 (1984), no. 3, 303-306. https://doi.org/10.1112/blms/16.3.303   DOI
8 J. M. Curry, Sheaves, cosheaves and applications, ProQuest LLC, Ann Arbor, MI, 2014.
9 P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kahler manifolds, Invent. Math. 29 (1975), no. 3, 245-274. https://doi.org/10.1007/BF01389853   DOI
10 A. du Plessis and L. Wilson, On right-equivalence, Math. Z. 190 (1985), no. 2, 163-205. https://doi.org/10.1007/BF01160458   DOI
11 A. Dold and R. Lashof, Principal quasi-fibrations and bre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305. http://projecteuclid.org/euclid.ijm/1255455128   DOI
12 Y. Felix, S. Halperin, and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9
13 M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York, 1973.
14 P. A. Griffiths and J. W. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Mathematics, 16, Birkhauser, Boston, MA, 1981.
15 P. Hilton, G. Mislin, and J. Roitberg, Localization of Nilpotent Groups and Spaces, North-Holland Publishing Co., Amsterdam, 1975.
16 J. Lurie, Higher Algebra, http://www.math.harvard.edu/lurie/papers/HA.pdf, September18, 2017.
17 J. P. May, Finite topological spaces, http://math.uchicago.edu/-may/FINITE/REUNotes2010/FiniteSpaces.pdf
18 M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, 2012, arXiv:1211.1647v1.
19 M. C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465-474. http://projecteuclid.org/euclid.dmj/ 1077376525   DOI
20 H. Nishinobu and T. Yamaguchi, Sullivan minimal models of classifying spaces for non-formal spaces of small rank, Topology Appl. 196 (2015), part A, 290-307. https://doi.org/10.1016/j.topol.2015.10.003   DOI
21 T. Speer, A short study of Alexandroff spaces, arXiv:0708.2136.
22 J. Stasheff, A classification theorem for bre spaces, Topology 2 (1963), 239-246. https://doi.org/10.1016/0040-9383(63)90006-5   DOI
23 A. K. Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc. 122 (1966), 379-398. https://doi.org/10.2307/1994555   DOI
24 D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math. No. 47 (1977), 269-331 (1978).   DOI
25 D. Tamaki, Cellular stratified spaces, in Combinatorial and toric homotopy, 305-435, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018.
26 D. Tanre, Homotopie rationnelle: modeles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, 1025, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/BFb0071482
27 J. Woolf, The fundamental category of a stratied space, J. Homotopy Relat. Struct. 4 (2009), no. 1, 359-387.