WHEN IS THE CLASSIFYING SPACE FOR ELLIPTIC FIBRATIONS RANK ONE?

TOSHIHIRO YAMAGUCHI

ABSTRACT. We give a necessary and sufficient condition of a rationally elliptic space X such that the Dold-Lashof classifying space Baut_1X for fibrations with the fiber X is rank one. It is only when X has the rational homotopy type of a sphere or the total space of a spherical fibration over a product of spheres.

1. Introduction

Let X be a simply connected CW complex of finite type and Baut_1X the identity component of the space of self-homotopy equivalences of X. The Dold-Lashof classifying space, Baut_1X , is the classifying space for orientable fibrations with fiber the homotopy type of X ([1]). Recall that X is said to be (rationally) elliptic if the dimensions of rational cohomology $H^*(X;Q)$ and homotopy $\pi_*(X) \otimes Q$ are finite. We denote $X \simeq_0 Y$ if X is rationally homotopic to Y. Let M(X) be the Sullivan minimal model of X ([2], [7]). By explicit calculations of derivations of M(X), we see

THEOREM 1.1. For elliptic spaces X, rank $\pi_*(\text{Baut}_1X) = 1$ if and only if $X \simeq_0 S^m$, the m-dimensinal sphere, or $M(X) \cong (\Lambda(x_1, \dots, x_n, y_1, \dots, y_n, v), d)$, where $dx_i = dy_i = 0$, $dv = \sum_{i=1}^n x_i y_i$ with $\deg x_i = \deg y_i$ for i = 1, ..., n and they are oddly generated.

Note that Baut₁ $X \simeq_0 K(Q,2n)$, K(Q,4n) and $K(Q,\deg v+1)$ if $X \simeq_0 S^{2n-1}$, S^{2n} and $M(X) \cong (\Lambda(x_1,\cdots,y_n,v),d)$ of above, respectively. Here K(Q,n) is the Eilenberg-Maclane space and a spatial realization of $(\Lambda(x_1,\cdots,y_n,v),d)$ is the total space of a fibration

$$S^{\deg v} = S^{4m+1} \to E \to (S^{2m+1})^{\times 2n},$$

Received March 22, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 55P62, 55P10.

Key words and phrases: elliptic space, minimal model, derivation, classifying space for fibrations.

where deg $x_i = \deg y_i = 2m + 1$. See [4, Theorem 2.3] for a property of such spaces.

2. Preliminary

The simply connected minimal model M=M(X) is given by a free Q-commutative $(xy=(-1)^{\deg x \cdot \deg y}yx)$ differential graded algebra $(\Lambda V,d)$ with a graded Q-vector space $V=\bigoplus_{i>1}V^i$ and a minimal differential d, i.e., $d(V^i)\subset (\Lambda^+V\cdot\Lambda^+V)^{i+1}$. In this paper, we assume the normality condition: $\ker(d|_V)=\ker[d|_V]$. For example, if dx=0, $dv=x^2$ and $dw=x^3$ in $M=(\Lambda(x,v,w),d)$ with $\deg x$ even, we take the normal model $M'=(\Lambda(x,v,w),d)$ with dx=0, $dv=x^2$ and dw=0, which is isomorphic to M.

Let $\operatorname{Der}_i M$ be the set of Q-derivations of M decreasing the degree by i. They are linear self-maps σ of M satisfying $\sigma(M^j) \subset M^{j-i}$ and $\sigma(xy) = \sigma(x)y + (-1)^{i \operatorname{deg} x} x \sigma(y)$. The boundary operator $\partial : \operatorname{Der}_i M \to \operatorname{Der}_{i-1} M$ is defined by $\partial(\sigma) = d \circ \sigma - (-1)^i \sigma \circ d$. Then $\partial \circ \partial = 0$. We denote $\bigoplus_{i>0} \operatorname{Der}_i M$ by $\operatorname{Der} M$. It is known that $\pi_{*+1}(\operatorname{Baut}_1 X) \otimes Q \cong H_*(\operatorname{Der} M(X), \partial)$ ([3, 7]).

In rational homotopy theory, the category of rational homotopy types of simply connected spaces and the category of Q-commutative differential graded algebras A^* with $A^1=0$ are equivalent [7]. Refer [2] for a general introduction and notations. Especially note that $V^i\cong \operatorname{Hom}(\pi_i(Y),Q)$ and $H^*(M(X))\cong H^*(X;Q)$. So our title is translated to "When dim $H_*(\operatorname{Der} M)=1$ for $M=(\Lambda(v_1,\cdots,v_n),d)$ with dim $H^*(M)<\infty$?".

In the followings, $\langle * \rangle$ is the ideal of ΛV generated by *, and put the derivation which send an element v of V to an element f of ΛV and the other generators to zero as (v,f). For example, for $M=(\Lambda(x,y,z),d)$ with dx=dy=0 and dz=xy, we have from definitions $\partial(y,1)=(-1)^{\deg y(1+\deg x)+1}(z,x)$ and $\partial(z,1)=0$. If $\deg x<\deg y$ and they are odd, (y,x) is a non exact ∂ -cycle too.

3. Proof

LEMMA 3.1. Let $M=(\Lambda V,d)$ be the minimal model with dim $V<\infty$ and dim $H^*(M)<\infty$. Then for an element a of V with deg a even, there is $u\in V$ such that $du=a^n+h\neq 0$ for some $h\in \Lambda V$.

Proof. Let $(\Lambda V, d) \to (\Lambda V/\langle V^{\deg a} \rangle, \overline{d}) = (\Lambda V^{\geq \deg a}, \overline{d})$ be the natural projection. Then a is a \overline{d} -cocycle. Since $\dim H^*(\Lambda V^{\geq \deg a}, \overline{d}) < \infty$ [5, p.183 Corollary], there is a minimal integer m such that $[a^m] = 0$ in it. Then there is an element $u \in V$ such that $\overline{d}u = a^n + g \neq 0$ for some $g \in \Lambda V^{\geq a}$ (n < m). Note h = g + g' for some $g' \in \langle V^{\deg a} \rangle$.

Proof of Theorem 1.1. We consider the condition of $M = M(X) = (\Lambda V, d)$ such that

(1)
$$\dim H_*(\mathrm{Der}M,\partial) = 1.$$

Let $V_0 = \{v \in V \mid dv = 0\}$, $s = \min V = \min\{i \mid V^i \neq 0\}$ and $t = \max V = \max\{i \mid V^i \neq 0\}$, which is finite since X is elliptic. Take an element v from V^t . Then the derivation (v, 1) is a non-exact ∂ -cycle. From (1), $V^t = Q\{v\}$. We fix this v. Since $\operatorname{Baut}_1 X$ is simply connected, (1) is equivalent to

$$H_*(\operatorname{Der} M, \partial) = Q\{(v, 1)\}.$$

Note deg v=t is odd since dim $\Lambda v=\dim H^*(\Lambda V/\langle V^{< t}\rangle, \overline{d})<\infty$ from [5, p.183 Corollary]. We give the proof by dividing s into two cases.

• When s is odd.

If dim $V_0 = 1$, then $M(X) = (\Lambda x, 0)$ for an element x of deg x = 2n+1, i.e., $X \simeq_0 S^{2n+1}$. If dim $V_0 > 1$ and d = 0, then dim $H_*(\text{Der}M) > 1$. For both (x, 1) and (y, 1) are non exact ∂ -cycles, which are not homologous, for some linearly independent elements x and y of V_0 .

Let dim $V_0 > 1$ and $d \neq 0$. Take an element x_1 form V_0^s . Since the ∂ -cycle (v, x_1) must be ∂ -exact from (1), there is an element y_1 of V $(y_1 \notin Q\{x_1\})$ such that

$$(2) dv = x_1 y_1 + f$$

with $f \in \Lambda^+ V \cdot \Lambda^+ V$ and

$$\partial(y_1,1) = -(v,x_1).$$

Suppose that deg $y_1 > s$. Then there is the ∂ -cycle (y_1, x_1) from (3). Since it must be exact from (1), there is an element z of V such that $dy_1 = x_1 z + g$ with $g \in \Lambda V$ and

$$\partial(z,1) = -(y_1,x_1).$$

Note $s \leq \deg z < \deg y_1$. If $\deg z = s$, $z \in V_0$. Then (v, z) is a non-exact cycle since (4) does not contain the term (v, *), and it contradicts (1). Even if $\deg z > s$, there is the ∂ -cycle (z, x_1) from (4). By iterating this argument, we reach an element w of V_0^s such that (v, w) is a non-exact

 ∂ -cycle. Thus the assumption is false, i.e., $\deg y_1 = s$ and $y_1 \in V_0$. From the argument of degree,

$$f = \sum_{i=2}^{n} x_i y_i \in \Lambda V_0$$

for a set $S = \{x_1, \dots, x_n, y_1, \dots, y_n\} \subset V_0^{\text{odd}}$, where $\deg x_i = \deg y_i = s$ and $Q\{x_i\} \neq Q\{y_i\}$ for i = 1, ..., n. Since

(5)
$$\partial \left(\sum_{i=1}^{n} \lambda_i(x_i, 1) + \sum_{i=1}^{n} \mu_i(y_i, 1) \right) = \left(v, -\sum_{i=1}^{n} \lambda_i y_i - \sum_{i=1}^{n} \mu_i x_i \right)$$

for $\{\lambda_i,\mu_i\}_i\subset Q,\,S$ must be linearly independent in V_0 from (1). For if $\sum_i\lambda_i(x_i,1)+\sum_i\mu_i(y_i,1)$ for some $\{\lambda_i,\mu_i\}_i$ is a ∂ -cycle, it can not be exact. If $\dim V_0^{\mathrm{odd}}>2n$, there is an element $z\in V_0^{\mathrm{odd}}-Q\{S\}$ such that (v,z) is a non exact ∂ -cycle from (5). So $V_0^{\mathrm{odd}}=Q\{S\}$. If there is a non zero element a in V_0^{even} , $\deg a>s$. Since $t+1=2s<2\deg a$, $[a^n]\neq 0$ for any n. From $\dim H^*(M)<\infty,\,V_0^{\mathrm{even}}=0$. Hence we have $V_0=Q\{S\}$ and $M(X)\cong (\Lambda(x_1,\cdots,x_n,y_1,\cdots,y_n,v),d)$.

• When s is even.

Take an element x from V_0^s . Since the ∂ -cycle (v, x) must be exact from (1), there is an element a of V such that

$$\partial(a,1) = -(v,x)$$

and dv = xa + f for some $f \in \Lambda^+ V \cdot \Lambda^+ V$. Then deg a is even, and there is an element u of V and an integer m > 1 such that

$$du = a^m + h \neq 0$$

for some $h \in \Lambda V$ from Lemma 3.1. If $\deg a > s$, we have $t < \deg u$. It contradicts $\max V$. Therefore $\deg a = s$, i.e., $a \in V_0$. Since $V = V_0 \oplus Q\{v\}$ from t = 2s - 1, we have $\dim V_0^{\text{even}} = 1$. So $a = \lambda x$ for some $\lambda \in Q - 0$ and f = 0.

If there is a non zero element y in V_0^{odd} , the derivation (v,y) is a non exact ∂ -cycle since $t+1=2s < s+\deg y$. Thus $V_0^{\text{odd}}=0$. Hence we have $M(X)\cong (\Lambda(x,v),d)$ with dx=0 and $dv=x^2$ with $\deg x=s=2n$, i.e., $X\simeq_0 S^{2n}$

QUESTION: When is $H^*(Baut_1X; Q)$ free?

When rank $\pi_*(\text{Baut}_1X) \leq 2$, $H^*(\text{Baut}_1X; Q)$ is a free graded algebra. See [6] for certain cases.

References

- [1] A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305.
- [2] Y. Félix, S. Halperin, and J. C. Thomas, Rational homotopy theory, Springer G.T.M. 205 (2001).
- [3] J. B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), 281–289.
- [4] _____, On the genus of elliptic fibrations, Proc. Amer. Math. Soc. 132 (2004), 597–606.
- [5] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977) 173-199.
- [6] S. B. Smith, Rational type of classifying space for fibrations, Contemp. Math. 274 (2001), 299–307.
- [7] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), 269–332.

FACULTY OF EDUCATION, KOCHI UNIVERSITY, KOCHI 780-8520, JAPAN *E-mail*: tyamag@cc.kochi-u.ac.jp