• Title/Summary/Keyword: classifier evaluation

Search Result 147, Processing Time 0.024 seconds

A Study on the Human Sensibility Evaluation Technique using 10-channel EEG (10채널 뇌파를 이용한 감성평가 기술에 관한 연구)

  • Kim, Heung-Hwan;Lee, Sang-Han;Kang, Dong-Kee;Kim, Dong-Jun;Ko, Han-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2690-2692
    • /
    • 2002
  • This paper describes a technique for human sensibility evaluation using 10-channel EEG(electroencephalogram). The proposed method uses the linear predictor coefficients as EEG feature parameters and a neural network as sensibility pattern classifier. For subject independent system, multiple templates are stored and the most similar template can be selected. EEG signals corresponding to 4 emotions such as, relaxation, joy, sadness and anger are collected from 5 armature performers. The states of relaxation and joy are considered as positive sensibility and those of sadness and anger as negative. The classification performance using the proposed method is about 72.6%. This will be promising performance in the human sensibility evaluation.

  • PDF

Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis (비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가)

  • Lee, Jee-Eun;Yoo, Sun-Kook;Lee, Byung-Chae
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2013
  • Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.

  • PDF

Text Document Classification Scheme using TF-IDF and Naïve Bayes Classifier (TF-IDF와 Naïve Bayes 분류기를 활용한 문서 분류 기법)

  • Yoo, Jong-Yeol;Hyun, Sang-Hyun;Yang, Dong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.242-245
    • /
    • 2015
  • Recently due to large-scale data spread in digital economy, the era of big data is coming. Through big data, unstructured text data consisting of technical text document, confidential document, false information documents are experiencing serious problems in the runoff. To prevent this, the need of art to sort and process the document consisting of unstructured text data has increased. In this paper, we propose a novel text classification scheme which learns some data sets and correctly classifies unstructured text data into two different categories, True and False. For the performance evaluation, we implement our proposed scheme using $Na{\ddot{i}}ve$ Bayes document classifier and TF-IDF modules in Python library, and compare it with the existing document classifier.

  • PDF

Evaluation of Sentimental Texts Automatically Generated by a Generative Adversarial Network (생성적 적대 네트워크로 자동 생성한 감성 텍스트의 성능 평가)

  • Park, Cheon-Young;Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.257-264
    • /
    • 2019
  • Recently, deep neural network based approaches have shown a good performance for various fields of natural language processing. A huge amount of training data is essential for building a deep neural network model. However, collecting a large size of training data is a costly and time-consuming job. A data augmentation is one of the solutions to this problem. The data augmentation of text data is more difficult than that of image data because texts consist of tokens with discrete values. Generative adversarial networks (GANs) are widely used for image generation. In this work, we generate sentimental texts by using one of the GANs, CS-GAN model that has a discriminator as well as a classifier. We evaluate the usefulness of generated sentimental texts according to various measurements. CS-GAN model not only can generate texts with more diversity but also can improve the performance of its classifier.

Prediction of Citizens' Emotions on Home Mortgage Rates Using Machine Learning Algorithms (기계학습 알고리즘을 이용한 주택 모기지 금리에 대한 시민들의 감정예측)

  • Kim, Yun-Ki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.65-84
    • /
    • 2019
  • This study attempted to predict citizens' emotions regarding mortgage rates using machine learning algorithms. To accomplish the research purpose, I reviewed the related literature and then set up two research questions. To find the answers to the research questions, I classified emotions according to Akman's classification and then predicted citizens' emotions on mortgage rates using six machine learning algorithms. The results showed that AdaBoost was the best classifier in all evaluation categories. However, the performance level of Naive Bayes was found to be lower than those of other classifiers. Also, this study conducted a ROC analysis to identify which classifier predicts each emotion category well. The results demonstrated that AdaBoost was the best predictor of the residents' emotions on home mortgage rates in all emotion categories. However, in the sadness class, the performance levels of the six algorithms used in this study were much lower than those in the other emotion categories.

Software Quality Classification using Bayesian Classifier (베이지안 분류기를 이용한 소프트웨어 품질 분류)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

  • Rathore, Shailendra;Sharma, Pradip Kumar;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1014-1028
    • /
    • 2017
  • Social networking services (SNSs) such as Twitter, MySpace, and Facebook have become progressively significant with its billions of users. Still, alongside this increase is an increase in security threats such as cross-site scripting (XSS) threat. Recently, a few approaches have been proposed to detect an XSS attack on SNSs. Due to the certain recent features of SNSs webpages such as JavaScript and AJAX, however, the existing approaches are not efficient in combating XSS attack on SNSs. In this paper, we propose a machine learning-based approach to detecting XSS attack on SNSs. In our approach, the detection of XSS attack is performed based on three features: URLs, webpage, and SNSs. A dataset is prepared by collecting 1,000 SNSs webpages and extracting the features from these webpages. Ten different machine learning classifiers are used on a prepared dataset to classify webpages into two categories: XSS or non-XSS. To validate the efficiency of the proposed approach, we evaluated and compared it with other existing approaches. The evaluation results show that our approach attains better performance in the SNS environment, recording the highest accuracy of 0.972 and lowest false positive rate of 0.87.

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

Improving of kNN-based Korean text classifier by using heuristic information (경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선)

  • Lim, Heui-Seok;Nam, Kichun
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Automatic text classification is a task of assigning predefined categories to free text documents. Its importance is increased to organize and manage a huge amount of text data. There have been some researches on automatic text classification based on machine learning techniques. While most of them was focused on proposal of a new machine learning methods and cross evaluation between other systems, a through evaluation or optimization of a method has been rarely been done. In this paper, we propose an improving method of kNN-based Korean text classification system using heuristic informations about decision function, the number of nearest neighbor, and feature selection method. Experimental results showed that the system with similarity-weighted decision function, global method in considering neighbors, and DF/ICF feature selection was more accurate than simple kNN-based classifier. Also, we found out that the performance of the local method with well chosen k value was as high as that of the global method with much computational costs.

  • PDF

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.