

www.kips.or.kr Copyright© 2017 KIPS

XSSClassifier: An Efficient XSS Attack Detection
Approach Based on Machine Learning Classifier on SNSs

Shailendra Rathore*, Pradip Kumar Sharma*, and Jong Hyuk Park*

Abstract
Social networking services (SNSs) such as Twitter, MySpace, and Facebook have become progressively
significant with its billions of users. Still, alongside this increase is an increase in security threats such as cross-
site scripting (XSS) threat. Recently, a few approaches have been proposed to detect an XSS attack on SNSs.
Due to the certain recent features of SNSs webpages such as JavaScript and AJAX, however, the existing
approaches are not efficient in combating XSS attack on SNSs. In this paper, we propose a machine learning-
based approach to detecting XSS attack on SNSs. In our approach, the detection of XSS attack is performed
based on three features: URLs, webpage, and SNSs. A dataset is prepared by collecting 1,000 SNSs webpages
and extracting the features from these webpages. Ten different machine learning classifiers are used on a
prepared dataset to classify webpages into two categories: XSS or non-XSS. To validate the efficiency of the
proposed approach, we evaluated and compared it with other existing approaches. The evaluation results
show that our approach attains better performance in the SNS environment, recording the highest accuracy of
0.972 and lowest false positive rate of 0.87.

Keywords
Cross-Site Scripting Attack Detection, Dataset, JavaScript, Machine Learning Classifier, Social Networking
Services

1. Introduction

Nowadays, social networking services (SNSs) are widely used, and the number of their users is
increasing rapidly. The huge number of SNSs users and public interest attract hackers; therefore, attacks
on SNS applications are more frequent. An attacker can launch different types of attacks on SNSs such
as cross-site scripting (XSS), phishing, distributed denial of service (DDOS), and many more [1,2]. An
XSS attack is a more dangerous attack, and it has become the favorite choice of attackers for attacking
SNSs. Certain features of SNS webpages such as JavaScript and AJAX and frequent communication
between users make these pages more susceptible to XSS attack [3]. An XSS attack is typically caused by
the inappropriate filtering policies on input text, enabling an attacker to inject XSS script into webpages.
When visiting the webpage containing the injected script, a user runs the script on his/her browser and
becomes a victim of XSS attack. For instance, if a user profile on SNSs is infected by XSS, the profiles of
the user’s friends and other connected user profiles can be easily infected by this attack [4]. A typical

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received March 2, 2017; first revision April 26, 2017; accepted May 30, 2017.

Corresponding Author: Jong Hyuk Park (jhpark1@seoultech.ac.kr)

* Dept. of Computer Science and Engineering, Seoul National University of Science & Technology (SeoulTech), Seoul, Korea
({rathoreshailendra, pradip, jhpark1}@seoultech.ac.kr)

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.03.0079 ISSN 2092-805X (Electronic)

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1015

XSS attack method is shown in Fig. 1.
The XSS attack can be categorized into three major types (persistent XSS, non-persistent XSS, and

DOM-based XSS [5]) and they are described as follows:

� Persistent attack usually happens when input from the user is kept in the target server, e.g.,
database, comment field, visitor log, and message forum. In the SNS environment, this attack
consists of multiple steps. Initially, the adversary stores the attack payload in the vulnerable SNSs
server using the webpage form. Subsequently, when the victim user accesses the webpage
containing the attack payload, this payload is executed on the browser of the SNS user, thereby
introducing a persistent XSS attack.

� Non-persistent attack happens when a web application returns the user input immediately in the
form of pop-up box, search result, error message, or any other reflected message containing
some or all of the user input without permanently storing the data provided by the user. In this
type of attack, initially, the adversary lures the victim by providing a URL with harmful
obfuscated code. Once the victim uses that URL, the harmful obfuscated code enclosed in the
URL is run on the victim’s browser, causing a reflected XSS attack.

� In a DOM-based XSS attack, DOM stands for Document Object Model, which is used to
represent web documents in a browser in structure format. It enables active scripts (JavaScript)
for document reference components such as a session cookie or a form field. A DOM-based XSS
attack happens when the active content of script, such as a JavaScript function, is altered by a
particularly created request so that an attacker can control a DOM element.

Fig. 1. A typical XSS attack method.

XSS vulnerability is usually exploited in the form of XSS worm on famous SNSs such as Facebook and
Twitter. As a malicious payload generally written in JavaScript, an XSS worm breaks the security of the
browser to propagate among the users of a website. The adversary can use this worm for malicious
intent or to steal personal information such as credit card number or passwords. In the SNS
environment, XSS worms can affect many features of SNS websites, such as chat systems and profiles,
when these features are not implemented properly or without security awareness. There are various XSS
worms that had already impacted many popular SNSs [6].

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1016 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

� Renren Worm: Renren is one of the largest Chinese SNS platforms infected by the Renren worm
in 2009. This worm propagated in multiple steps and affected millions of Renren users. Initially,
the attacker posts a malicious flash movie on his profile. Subsequently, when a victim user views
the attacker-infected profile and exploits the flash vulnerability of the flash movie, such flash
vulnerability injects malicious JavaScript on the victim’s side. Furthermore, the malicious
injected script replicates itself on the wall of the victim. When the victim’s friends view the
infected profile, they are also infected by the worm replication [7].

� SamyWorm: MySpace is an SNS platform used by millions of users to keep in touch and share
their interests with each other. It was one of the first victims of the XSS worm named Samy (name
of the worm creator). This worm infected MySpace users in two stages. In the first stage, Samy,
the worm creator, injected an attack payload into his profile. Subsequently, in the second step, any
user viewing the Samy-infected profile got infected, and the attack payload spread to the accessing
user’s profile. Thus, the infected accessing user became a source of further infection [8].

� Boonana Worm: Boonana is another Java applet worm released in October 2010. Infection by
this worm involved multiple segments. Initially, the attacker posts a malicious Java applet on his
profile. Subsequently, when the victim user views the attacker’s profile and exploits a Java
vulnerability of the malicious Java applet, the Java vulnerability injects malicious JavaScript on
the victim’s side. The worm replicates itself on the victim user’s wall using the stolen cookie. The
Boonana worm multiplies over SNSs as more users access the malicious applet [9].

� SpaceFlash Worm: Released in 2006, it is a JavaScript XSS worm that exploited a flash
vulnerability of the MySpace platform. In the first stage of worm infection, the victim user visits
the “About Me” page of the attacker’s profile (containing a malicious Flash applet) and exploits
the flash vulnerability of the “About Me” page. The flash vulnerability injects malicious
JavaScript on the victim’s side. Furthermore, the worm replicates itself on the victim’s “About
Me” page by sending an AJAX request to the server. The SpaceFlash worm multiplies over SNSs
as more victims visit the malicious “About Me” page [10].

Recently, XSS attacks have become a major security concern in the area of SNS security. According to

the report from Hackgon [10], 12.75% of the total web attacks were XSS attacks, and nearly 70% of all
vulnerabilities on the web were categorized as XSS-related vulnerabilities. Thus, many researchers have
proposed ideas on detecting XSS attack on the web. Likarish et al. [11] proposed an approach based on
machine learning technique to identify malicious JavaScript on the web. Note, however, that it can be
used to detect obfuscated malicious JavaScript only; it does not cover all possibilities of XSS attack.
Nunan et al. [12] used an automatic classification approach for XSS attack detection. This approach can
be applied to SNSs to identify an XSS attack. The experimental analysis of this approach was restricted
to the classifier and calculation of its factors. Thus, there may be other classifiers that can be used to
classify the XSS attack and attain better results. The existing techniques for XSS attack detection on the
web cannot be efficiently applied to SNSs because some specific features of SNSs—such as more trust
between two nearer nodes, lower average distance between two nodes, and higher frequency of
communication between users—make detecting an XSS attack on SNSs using the existing techniques
difficult; hence the need for a method that detects an XSS attack on SNSs by considering their specific
features. In this paper, we propose a machine learning-based approach that uses SNSs’ specific features
to detect an XSS attack on SNSs. The following are the major contributions of this paper:

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1017

� We analyze the recent characteristics of SNSs webpage and suggest a novel collection of features
that are responsible for XSS attack on SNSs.

� A novel dataset is constructed by collecting 1,000 SNS webpages and extracting suggested
features from the webpages.

� This paper offers a novel XSS attack detection approach that relies on machine learning classifiers
to classify XSS-infected webpages from non-infected ones.

� We provide a thorough evaluation of the proposed approach to prove its validity and
effectiveness in the SNS environment.

The rest of this paper is organized as follows: Section 2 discusses various existing approaches that

have been recently proposed for XSS detection in the web application; Section 3 describes the proposed
approach and its four steps of feature identification, collection of webpages, feature extraction and
training dataset construction, and machine learning classification; In Section 4, we experimentally
evaluate our proposed approach and compare it with the existing approaches; Finally, Section 5
presents the conclusions.

2. Related Work

Nowadays, many researchers are working on XSS detection on SNSs, and a significant amount of
research work has been done in the past. Likarish et al. [11] proposed a machine learning approach to
detect the obfuscated malicious JavaScript in web applications. This approach identified 65 features and
trained 4 classifiers for classification. The analysis of this approach suggests that we can use the machine
learning technique for XSS attack detection on SNSs. The research of Sun et al. [13] presented a client-
side approach to detecting the JavaScript worm via a Firefox plug-in. This approach relies on string
comparison to detect the propagation of XSS worm. Note, however, that it defends only a particular
client and does not provide protection for the whole web application. In addition, it is vulnerable to
simple polymorphic worms wherein the payload signature changes actively throughout the propagation
of the worm. Nunan et al. [12] applied the automatic classification of webpages for XSS attack
detection. This type of classification is based on the features of URL and webpage-document. The
experiment results show the usefulness of the suggested features in XSS attack detection. Livshits and
Cui [14] proposed an automatic detection tool to detect JavaScript worms known as Spectator. This tool
adopts a means of propagation chain across the social network for searching the worm. It disallows
uploading from the infected nodes to control further spread. It is also based on the distributed tagging
and tainting technique, which identifies the worm spreading behaviors. As a limitation of this
technique, it only identifies the JavaScript worm when a large number of users have been affected.

Cao et al. [6] proposed PathCutter, a detection tool that can detect content-sniffing XSS, DOM-based
XSS, and traditional XSS attack. They accomplished their objective using two fundamental steps:
request authentication and view separation. PathCutter splits the web application into diverse views,
and then separates these views on the browser side. The authors presented both proxy-side and server-
side deployment of PathCutter. They implemented the tool on two open-source SNSs: Elgg and
WordPress. They also tested their tool on five real-world worms: Yamanner, SpaceFlash, Renren,

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1018 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

MySpace Samy, and Boonana worm. PathCutter does not prevent form content ex-filtration XSS
attacks and cookie stealing. Another weakness of this approach is that it consumes longer rendering
time on the client side, For instance, to respond to a post containing 45 comments, a system with
PathCutter takes 30% longer rendering time compared to the system without PathCutter
implementation [6]. Ter Louw and Venkatakrishnan [15] developed a tool for protecting end-users
from an XSS attack known as BLUPRINT. It offers powerful affirmation that the web browser will not
run malicious scripts in a web application with low integrity output. The tool applies a technique that
reduces the trust placed in web browsers when understanding untrusted content. It has been used with
numerous real web applications to protect them from XSS worm with less overhead.

Xu et al. [16] introduced a correlation-based system that can detect and mitigate the risk of active
worm propagation on SNSs. It creates a surveillance network by allocating “decoy friends” to a certain
group of users, and the “decoy friends” will passively monitor the network for suspicious activities. The
main weakness of this approach is the difficulty of adding “decoy friends” to the user friend list without
the consent of the user. This approach protects against active worms on SNSs such Koobface but does
not provide protection against passive worms such as XSS worms. Another disadvantage of this
approach is that it requires a certain number of infected users before detection.

Recently, Ahmed and Ali [17] proposed an approach to detecting XSS attack, which uses genetic
algorithm for generating a test dataset. They tested their approach on MySQL and PHP-based web
applications. The research of Wang and Zhou [18] presented a novel mechanism based on a new
technique such as HTML5 to detect XSS attacks. The performance of the proposed mechanism was
evaluated with XSSer, a popular tool developed by OWASP.

3. Proposed Approach

In this section, we discuss our proposed approach to detecting XSS attacks on SNSs. The functional
block diagram of our approach is shown in Fig. 2. Our approach depends on the machine learning
classifiers to classify the webpages into two categories: XSS or non-XSS. It mainly involves four steps:
feature identification, collection of webpages, feature extraction and training dataset construction, and
machine learning classification. The description of each step is described below.

Fig. 2. Functional block diagram of the proposed approach.

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1019

3.1 Feature Identification

Feature identification is an important step in the machine learning classification process. As the main
classification ingredient, features correctly separate XSS-infected samples from the non-infected ones.
In our proposed approach, we define the list of features. These features are extracted from URLs,
webpage content, and SNSs to create a feature vector, which is given as an input to the classifier. A
classification of XSS features is shown in Fig. 3 and is described below.

Fig. 3. Classification of XSS features.

1) URL features: The uniform resource locator (URL) can be utilized to conceal malicious XSS

codes that play a vital role in non-persistent XSS. An attacker can create some decoration on the
URLs to lure the user into clicking them, and detection of decorated URLs is more difficult. This
type of decoration can also be used as evidence to detect an XSS attack [19]. We studied an XSS
attack on a webpage by using decorated URLs and examined some features that separate XSS-
infected samples from the non-infected ones. The list of significant URL features is shown in
Table 1.

Table 1. List of URL features

No. Feature Type
1 Total count of long URLs Integer

2 The maximum size of URLs Integer

3 The maximum occurrence of domains found in the URLs Integer

4 Total count of URLs with maximum number of obfuscated characters Integer

2) HTML tag features: HTML tags are an essential component for create a webpage. These tags and
their attributes (such as value) can be inserted and deleted dynamically by scripts. Therefore,
certain HTML tags can be used by an attacker to inject the XSS code scripts from outside. These
HTML tags consist of <link>, <object>, <form>, <script>, <embed>, <ilayer>, <layer>, <style>,
<applet>, <meta>, , <iframe>, and many more. For instance, the XSS worm “Samy”
infected MySpace webpages by injecting a huge quantity of XSS payload in the <div> tag of the
webpages [20]. On the other hand, JavaScript language is used in a webpage for embedding
tasks, but an attacker can misuse some methods on the embedded XSS payload such as exec(),
fromCharCode(), eval, alert(), getElementsByTagName(), write(), unscape(), and escape() [21].
Code obfuscation is also used to hide the XSS code. Therefore, we have also included some other
features like external script, harmful keyword, size and number of scripts, maximum number of

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1020 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

encoded characters in JavaScript, having trouble with event handler, etc. In our proposed
approach, we selected 18 HTML tag features as shown in Table 2.

3) SNS Features: SNSs add some additional features to enhance functionality compared to normal
networks; for example, in an SNS environment, there is greater trust between two nearer nodes
compared to those in a normal network, the average distance between any two nodes is much
smaller than that in normal networks, and the propagation speed of worms is faster. These
additional features increase the chances of XSS attack on SNSs, and the attacker can easily infect
a single node with an XSS worm. This XSS worm propagates much faster on SNSs and infects
the whole network in a very short time [16]. We selected some other features that are
responsible for XSS attack on SNSs as shown in Table 3.

Table 2. List of HTML tag features

No. Feature Type
1 Total count of harmful keywords Integer
2 Total count of Iframe Integer
3 Total count of external Iframe source Integer
4 Total count of external links Integer
5 Having trouble with event handlers Boolean
6 Presence of malicious java script method Boolean
7 Total count of DOM-modified keywords Integer
8 Total count of String-decoding keywords. Integer
9 Total count of AJAX keywords, and Other Keywords Integer

10 The maximum size of the script Integer
11 Total count of maximum size of the script Integer
12 Total count of encoded links Integer
13 Maximum count of encoded characters in JavaScript Integer
14 Maximum size of HTML tags Integer
15 Total count of maximum size HTML tags Integer
16 Maximum count of JavaScript strings in HTML tags Integer
17 The existence of obfuscation code Boolean
18 Total count of external Script source Integer

Table 3. List of SNSs features

No. Feature Type

1 Total count of suspicious HTML tags in SNSs webpage Integer

2 Total count of suspicious URLs in SNSs webpage Integer

3 Number of suspicious JavaScript strings in SNSs traffic in unit time (frequency) Integer

3.2 Collecting Webpages

In this Step, a database is created by collecting malicious and benign webpages from various trusted
Internet sources such as XSSed [22], Alexa [23], and Elgg [24]. The database consists of three kinds of
webpages: benign webpages, malicious webpages containing obfuscated code, and SNSs webpages

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1021

infected by XSS worm. The benign webpages are collected from the Alexa database, whereas malicious
webpages are collected from the XSSed database. Note, however, that SNSs webpages are not available
in XSSed and Alexa database. Therefore, we used Elgg 1.12.4, which is an open social network engine
with many available plug-INS. The SNS webpages are collected by modifying the Elgg source codebase
and subsequently inserting the corresponding modifications. Fig. 4 shows the different categories of the
collected webpages and their Internet sources.

3.3 Features Extraction and Training Dataset Construction

This step is responsible for extracting and recording XSS features (identified in step 1) from each of
the collected webpages. For features extraction, we use various tools as described in Table 4. Each
webpage is manually labeled as XSS or non-XSS based on the extracted features, and a training dataset
is constructed. We constructed a training dataset containing 1,000 webpages (400 malicious and 600
benign) and their extracted features.

Fig. 4. Collection of webpages from various Internet sources.

Table 4. List of tools for webpage feature extraction
Tool Description

Website crawler This tool is used to extract the required information from websites.

Jericho HTML parser It is a java library that provides a facility for analyzing and manipulating a specific
portion of an HTML document, and it consists of tags and keywords.

JavaScript engine A JavaScript engine is a virtual machine that interprets and executes JavaScript.

Website pattern extractor

This tool is used to extract data from a webpage according to a Regular Expression
or a specified predefined pattern.

Link / Header crawler

This tool is used to determine a series of all URLs associated with a webpage. It
produces a summary that offers a list of title tags and header responses for all
webpages associated with the webpage being tested. This tool can also help
identify irrelevant content, unusual redirects, and possible broken links.

Keyword density analysis

This tool takes a URL as input, examines it, and returns a list of the most
commonly used phrases or keywords on the webpage. It is used to identify the
frequency of keywords and list of harmful keywords.

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1022 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

3.4 Machine Learning Classification

The goal of this step is to categorize the webpages into XSS or Non-XSS. In other words, it is used to
determine whether a webpage is infected with XSS or is legitimate. In order to achieve this objective, the
training dataset (constructed in an earlier step) is supplied to the machine learning classifier. The
classifier generates a predictive model that is further used to detect XSS-infected webpages. In our
proposed approach, we used Weka [25] as a tool to generate predictive model.

4. Experiment and Evaluation

4.1 Performance Measurement Methodology

To measure the performance of our proposed approach, we applied the 10-fold cross-validation
technique [26] for the classification experiments. It increases the evaluation reliability of the classifier.
The aim of this technique is to forecast and estimate how accurate a classification model will work in
practice. Initially, it partitions the original whole dataset into ten equally-sized folds, from which nine
folds are operated together as a training dataset and one fold is used as a test dataset. Subsequently, the
machine learning classifier performed evaluation by applying both datasets. This entire procedure of
partitions and evaluation is repeated ten times. Each fold is used exactly once as the test dataset in each
evaluation. The final results consist of 10 evaluation results on average [27,28]. The classification results
are described using a confusing matrix as shown in Table 5.

Table 5. Confusing matrix

Actual
Predicted

XSS Non-XSS
XSS �� ��

 Non-XSS �� ��

where �� (True positive) shows the number of XSS-infected webpages classified as XSS, �� (False
positive) shows the number of non-XSS-infected webpages classified as XSS, �� (False negative) shows
the number of XSS-infected webpages classified as non-XSS, and �� (True negative) shows the number
of non-XSS-infected webpages classified as non-XSS-infected.

We use the “Confusion Matrix” as a metric to evaluate classifier performance based on our proposed
features. This matrix enables the assessment of result of false negatives and false positives as shown in
Table 5. We compute the following standard measures based on this matrix:

������ = �� (�� + ��)⁄ (1)

����
��� = �� (�� + ��)⁄ (2)

� −���
��� = (2 ∗ ������ ∗
����
���) (������ +
����
���)⁄ (3)

�������� = (�� + ��) (�� + �� + �� + ��)⁄ (4)

���
�	��
�����	���� = �� (�� + ��)⁄ (5)

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1023

4.2 Performance Evaluation of the Proposed Approach

We performed an evaluation to find out how accurately our proposed approach determines whether a
webpage is infected with XSS or is legitimate. For the evaluation, we used Weka as a tool for creating
and measuring the predictive model. The Weka is a data mining tool that evaluates a classification
model using numerous machine learning algorithms. It can process clustering, regression, and
classification. The evaluation procedure of our approach involves two phases. In the first phase of
evaluation, a set of training datasets (constructed in subsection 2.3) without SNS features was supplied
to two classifiers known as Decorate and ADTree. Subsequently, we evaluated the performance of both
classifiers. In the second phase of evaluation, we repeated the same process as that in the first phase by
supplying a set of training datasets with SNS features to both classifiers, and performance was evaluated
for both classifiers. Table 6 details the performance of both classifiers with and without SNS features.
From Table 6, it can be easily seen that both classifiers attained good performance results in terms of
standard measures as described in the earlier subsection. These results show the effectiveness of the
proposed approach in the XSS classification of webpages. Furthermore, better performance was attained
with the use of SNS features compared to the performance achieved without using them. In general, the
experiment results demonstrate that our approach to XSS detection is more effective in the SNS
environment.

We also evaluated which machine learning classifier attains better performance in detecting XSS-
infected webpages in the SNS environment. For the evaluation, a set of training datasets with SNS
features was supplied to the top 10 classifiers (as shown in Table 7). Consequently, we evaluated and
compared the performance results for all classifiers to find which classifier attains good performance.
We compared the results for all classifiers in terms of standard measures as described in the earlier
subsection. It can be easily observed from Table 7 that each classifier had reasonable performance in
detecting XSS-infected webpages. Every classifier had recall, precision of more than 0.950, F-measure of
over 0.952, accuracy of more than 0.947, and false positive rate of below 2.24. These results validate the
effectiveness of our proposed approach. The overall result of all classifiers shows that the tree classifiers
(RandomForest and ADTree) obtained the best performance compared to meta-classifiers (Decorate
and AdaBoost.M1). RandomForest is the best classifier with recall of 0.971, precision of 0.977, F-
measure of 0.974, accuracy of 0.972, and lowest false positive rate of 0.87.

Table 6. Performance of ADTree and Decorate classifier by using both with SNSs and without SNSs
features

ADTree Decorate

Without SNSs
features

With SNSs
features

Without SNSs
features

With SNSs
features

Recall 0.956 0.972 0.949 0.968

Precision 0.954 0.970 0.946 0.965

F-measure 0.950 0.971 0.947 0.966

Accuracy 0.952 0.971 0.946 0.966

False positive rate 0.131 0.092 0.152 0.112

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1024 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

Table 7. Performance of 10 classifiers for XSS detection
 Recall Precision F-measure Accuracy False positive rate

RandomForest 0.971 0.977 0.974 0.972 0.087

ADTree 0.972 0.970 0.971 0.971 0.092

RandomSubSpace 0.969 0.972 0.970 0.970 0.092

Decorate 0.968 0.965 0.966 0.966 0.112

AdaBoost.M1 0.965 0.964 0.964 0.966 0.123

JRip 0.962 0.960 0.961 0.964 0.149

NaïveBayes 0.964 0.966 0.965 0.963 0.151

Support Vector Machine 0.958 0.955 0.956 0.958 0.187

Logistic Regression 0.955 0.950 0.952 0.956 0.146

k-Nearest Neighbors 0.950 0.954 0.952 0.947 0.224

Finally, in order to validate our classification results, the obtained results were compared with the
research results of Wang et al. [29]. In this research, similarity and difference-based features were
adopted for XSS attack detection on SNSs. A training dataset was constructed by extracting these
features of the webpages collected from Dmoz, XSSed, and Weibo database. The performance results
were obtained by evaluating the constructed training dataset on two classifiers known as AdaBoost.M1
and ADTree. Figs. 5 and 6 illustrate the comparison of the research results of Wang et al. [29] and the
results achieved by our proposed approach for AdaBoost.M1 and ADTree classifiers. The results of the
comparison show that our approach obtains excellent result compared to the research results of Wang
et al. [29] in terms of precision, recall, and F-measure due to the following reasons: (i) in our approach,
we used multiple and selected features of URLs, HTML tag, and SNSs from diverse Internet sources that
provide better prediction rate of XSS webpages in the SNS environment, such as XSSed, Alexa, and
Elgg; (ii) The accumulated dataset in our approach is not biased since it contains a reasonable number
of both malicious and benign webpages; and (iii) Our accumulated dataset is recent, containing recently
infected XSS webpages.

Fig. 5. Performance comparison with the proposed approach by using AdaBoost.M1 classifier.

Wang et al. [29]

Proposed approach

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1025

Fig. 6. Performance comparison with the proposed approach by using ADTree classifier.

5. Conclusion

This study investigated the XSS attack on SNSs and provided two major contributions in the area of
SNSs security. First, we provided an analysis of the recent characteristics of SNS webpages and
recommended a novel set of XSS features on SNSs. Second, we proposed a novel machine learning-
based approach for detecting XSS attacks on SNSs. We evaluated the proposed approach by using ten
classifiers on the training dataset cooperating with and without SNS features. The evaluation results
show that our approach obtained outstanding performance with the lowest false positive rate of 0.87
and highest accuracy of 0.972. Our findings suggest that the recommended set of features can be used to
detect XSS attack on SNSs, and that the proposed approach can be incorporated with SNSs for detecting
XSS webpages in real time.

In the future, our approach can be enhanced in two directions. The first direction involves
enhancement in the proposed feature set, and the second one provides the application of advanced
machine learning algorithms, such as deep learning and extreme learning machine for the classification
of XSS webpages.

References

[1] D. H. Lee, “Personalizing information using users' online social networks: a case study of CiteULike,” Journal
of Information Processing Systems, vol. 11, no. 1, pp. 1-21, 2015

[2] J. Kim, D. H. Yao, H. Jang, and K. Jeong, “WebSHArk 1.0: a benchmark collection for malicious web shell
detection,” Journal of Information Processing Systems, vol. 11, no. 2, pp. 229-238, 2015

[3] Y. Zhang, X. Wang, Q. Luo, and Q. Liu, “Cross-site scripting attacks in social network APIs,” in Proceedings of
Workshop on WEB 2.0 Security and Privacy (W2SP 2013), San Francisco, CA, 2013.

[4] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro, “Current state of research on cross-site scripting
(XSS): a systematic literature review,” Information and Software Technology, vol. 58, pp. 170-186, 2015

[5] M. K Gupta, M. C. Govil, and G. Singh, “Static analysis approaches to detect SQL injection and cross site
scripting vulnerabilities in web applications: a survey,” in Proceedings of the Recent Advances and Innovations
in Engineering (ICRAIE), Jaipur, India, 2014, pp. 1-5

Wang et al. [29]

Proposed approach

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1026 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

[6] Y. Cao, V. Yegneswaran, P. Possas, and Y. Chen, “Pathcutter: severing the self-propagation path of XSS
JavaScript Worms in social web networks,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS’12), San Diego, CA, 2012, pp. 1-14

[7] L. Constantin, “New Chinese social networking worm discovered,” 2009 [Online]. Available: http://news.
softpedia.com/news/New-Chinese-Social-Networking-Worm-Discovered-120021.shtml.

[8] Technical explanation of The MySpace Worm [Online]. Available: https://samy.pl/popular/tech.html.
[9] G. Cluley, “Cross-platform Boonana Trojan targets Facebook users,” 2010 [Online]. Available: https://nakedsecurity.

sophos.com/2010/10/28/cross-platform-worm-targets-facebook-users/.
[10] Hackagon, “XSS attack,” 2016 [Online]. Available: http://hackagon.com/xss-attack/.
[11] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious JavaScript detection using classification techniques,” in

Proceedings of the 4th International Conference on Malicious and Unwanted Software (MALWARE), Montreal,
Canada, 2009, pp. 47-54.

[12] A. E. Nunan, E. Souto, E. M. dos Santos, and E. Feitosa, “Automatic classification of cross-site scripting in
webpages using document-based and URL-based features,” in Proceedings of the IEEE Symposium on
Computers and Communications (ISCC), Cappadocia, Turkey, 2012, pp. 000702-000707.

[13] F. Sun, L. Xu, and Z. Su, “Client-side detection of XSS worms by monitoring payload propagation,” in
Proceedings of the 14th European Symposium on Research in Computer Security, Saint-Malo, France, 2009, pp.
539-554.

[14] V. B. Livshits and W. Cui, “Spectator: detection and containment of JavaScript Worms,” in Proceedings of
the USENIX Annual Technical Conference, Boston, MA, 2008, pp. 335-348.

[15] M. Ter Louw and V. N. Venkatakrishnan, “Blueprint: robust prevention of cross-site scripting attacks for
existing browsers,” in Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, Oakland, CA,
2009, pp. 331-346.

[16] W. Xu, F. Zhang, and S. Zhu, “Toward worm detection in online social networks,” in Proceedings of the 26th
Annual Computer Security Applications Conference (ACSAC’10), Austin, TX, 2010, pp. 11-20.

[17] M. A. Ahmed, and F. Ali, “Multiple-path testing for cross site scripting using genetic algorithms,” Journal of
Systems Architecture, vol. 64, pp. 50-62, 2016

[18] C. H. Wang and Y. S. Zhou, “A new cross-site scripting detection mechanism integrated with HTML5 and
CORS properties by using browser extensions,” in Proceedings of the 2016 International Computer
Symposium (ICS), Chiayi, Taiwan, 2016, pp. 264-269.

[19] Common Attack Pattern Enumeration and Classification, “CAPEC-72: URL encoding,” 2017 [Online].
Available: https://capec.mitre.org/data/definitions/72.html.

[20] Y. S. Hwang, J. B. Kwon, J. C. Moon, and S. J. Cho, “Classifying malicious webpages by using an adaptive
support vector machine,” Journal of Information Processing Systems, vol. 9, no. 3, pp. 395-404, 2013.

[21] R. Wang, X. Jia, Q. Li, and D. Zhang, “Improved N-gram approach for cross-site scripting detection in online
social network,” in Proceedings of the Science and Information Conference (SAI), London, UK, 2015, pp. 1206-
1212.

[22] XSS attacks information [Online]. Available: http://www.xssed.com/.
[23] Alexa, “The top 500 sites on the web,” 2017 [Online]. Available: http://www.alexa.com/topsites.
[24] Elgg Foundation, “Introducing a powerful open source social networking engine,” [Online]. Available:

https://elgg.org/.
[25] Weka 3: data mining software in Java [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.
[26] K. M. Prabusankarlal, P. Thirumoorthy, and R. Manavalan, “Assessment of combined textural and morphological

features for diagnosis of breast masses in ultrasound,” Human-centric Computing and Information Sciences, vol. 5,
no. 1, pp. 1-17, 2015.

Shailendra Rathore, Pradip Kumar Sharma, and Jong Hyuk Park

J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017 | 1027

[27] C. Chantrapornchai and P. Nusawat, “Two machine learning models for mobile phone battery discharge rate
prediction based on usage patterns,” Journal of Information Processing Systems, vol. 12, no. 3, pp. 436-454,
2016.

[28] J. H. Choi, H. S. Shin, and A. Nasridinov, “A comparative study on data mining classification techniques for
military applications,” Journal of Convergence, vol. 7, pp. 1-7, 2016.

[29] R. Wang, X. Jia, Q. Li, and S. Zhang, “Machine learning based cross-site scripting detection in online social
network,” in Proceedings of the 2014 IEEE International Conference on High Performance Computing and
Communications (HPSS), 2014 IEEE 6th International Symposium on Cyberspace Safety and Security (CSS),
and 2014 IEEE 11th International Conference on Embedded Software and Systems (ICESS), Paris, France,
2014, pp. 823-826.

Shailendra Rathore

He is a Ph.D. student in the Department of Computer Science at Seoul National
University of Science and Technology (SeoulTech.), Seoul, Korea. Currently, he is
working in Ubiquitous Computing Security (UCS) Lab under the supervision of Prof.
Jong Hyuk Park. His broadly research interest includes Information and Cyber
Security, SNS, Digital Forensic, IoT. Previous to joining PhD at SeoulTech, he has
worked as an Executive -Technology at Crompton Greaves Global R & D, Mumbai,
India from June, 2013 to July, 2014. He received his M.E. in Information Security
from Thapar University, Patiala, India and B.Tech. in Computer Engineering from
Rajasthan Technical University, Kota, Rajasthan, India

Pradip Kumar Sharma http://orcid.org/0000-0001-6620-9083

He is a Ph.D. scholar at the Seoul National University of Science and Technology. He
works in the Ubiquitous Computing & Security Research Group under the
supervision of Prof. Jong Hyuk Park. Prior to beginning the PhD program, he worked
as a software engineer at MAQ Software, India. He worked on a variety of projects,
proficient in building large-scale complex data warehouses, OLAP models and
reporting solutions that meet business objectives and align IT with business. He
received his dual Master’s degree in Computer Science from the Thapar University,
in 2014 and the Tezpur Univerity, in 2012, India. His current research interests are
focused on the areas of ubiquitous computing and security, cloud computing, SDN,
SNS, and IoT. He is also reviewer of Journal of Supercomputing (JoS).

James J. (Jong Hyuk) Park http://orcid.org/0000-0003-1831-0309

He received Ph.D. degrees in Graduate School of Information Security from Korea
University, Korea and Graduate School of Human Sciences from Waseda University,
Japan. From December 2002 to July 2007, Dr. Park had been a research scientist of
R&D Institute, Hanwha S&C Co., Ltd., Korea. From September 2007 to August 2009,
he had been a professor at the Department of Computer Science and Engineering,
Kyungnam University, Korea. He is now a professor at the Department of Computer
Science and Engineering and Department of Interdisciplinary Bio IT Materials, Seoul

XSSClassifier: An Efficient XSS Attack Detection Approach Based on Machine Learning Classifier on SNSs

1028 | J Inf Process Syst, Vol.13, No.4, pp.1014~1028, August 2017

National University of Science and Technology (SeoulTech), Korea. Dr. Park has
published about 200 research papers in international journals and conferences. He
has been serving as chairs, program committee, or organizing committee chair for
many international conferences and workshops. He is a founding steering chair of
some international conferences—MUE, FutureTech, CSA, UCAWSN, etc. He is
editor-in-chief of Human-centric Computing and Information Sciences (HCIS) by
Springer, The Journal of Information Processing Systems (JIPS) by KIPS, and Journal
of Convergence (JoC) by KIPS CSWRG. He is Associate Editor / Editor of 14
international journals including 8 journals indexed by SCI(E). In addition, he has
been serving as a Guest Editor for international journals by some publishers:
Springer, Elsevier, Wiley, Oxford University press, Hindawi, Emerald, Inderscience.
His research interests include security and digital forensics, human-centric
ubiquitous computing, context awareness, multimedia services, etc. He got the best
paper awards from ISA-08 and ITCS-11 conferences and the outstanding leadership
awards from IEEE HPCC-09, ICA3PP-10, IEE ISPA-11, and PDCAT-11.
Furthermore, he got the outstanding research awards from the SeoulTech in 2014.
Dr. Park's research interests include human-centric ubiquitous computing, vehicular
cloud computing, information security, digital forensics, secure communications,
multimedia computing, etc. He is a member of the IEEE, IEEE Computer Society,
KIPS, and KMMS.

