• Title/Summary/Keyword: classification model

Search Result 4,101, Processing Time 0.036 seconds

DNN based Binary Classification Model by Particular Matter Concentration (DNN 기반의 미세먼지 농도별 이진 분류 모델)

  • Lee, Jong-sung;Jung, Yong-jin;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.277-279
    • /
    • 2021
  • There is a problem that learning of a prediction model is not well performed depending on the characteristics of each particular matter concentration. To solve this problem, it is necessary to design a prediction model for low concentration and high concentration separately. Therefore, a classification model is needed to classify the concentration of particular matter into low and high concentrations. This paper proposes a classification model to classify low and high concentrations based on the concentration of particular matter. DNN was used as the classification model algorithm, and the classification model was designed by applying the optimal parameters after searching for hyper parameters. As for the result of evaluating the performance of the model, 97.54% of the low concentration classification was measured. And in the case of high concentration classification, 85.51% was measured.

  • PDF

A GA-based Classification Model for Predicting Consumer Choice (유전 알고리듬 기반 제품구매예측 모형의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2009
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate Its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss Its methodological characteristics in comparison with other existing classification methods. Also, we conduct a series of experiments employing survey data of consumer choices of MP3 players to assess the prediction power of the model. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

A GA-based Classification Model for Predicting Consumer Choice (유전 알고리듬 기반 제품구매예측 모형의 개발)

  • Min, Jae-Hyeong;Jeong, Cheol-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.1-7
    • /
    • 2008
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss its methodological characteristics in comparison with other existing classification methods. Also, to assess the prediction power of the model, we conduct a series of experiments employing survey data of consumer choices of MP3 players. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

  • PDF

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

A Study on Applying the SRCNN Model and Bicubic Interpolation to Enhance Low-Resolution Weeds Images for Weeds Classification

  • Vo, Hoang Trong;Yu, Gwang-hyun;Dang, Thanh Vu;Lee, Ju-hwan;Nguyen, Huy Toan;Kim, Jin-young
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.17-25
    • /
    • 2020
  • In the image object classification problem, low-resolution images may have a negative impact on the classification result, especially when the classification method, such as a convolutional neural network (CNN) model, is trained on a high-resolution (HR) image dataset. In this paper, we analyze the behavior of applying a classical super-resolution (SR) method such as bicubic interpolation, and a deep CNN model such as SRCNN to enhance low-resolution (LR) weeds images used for classification. Using an HR dataset, we first train a CNN model for weeds image classification with a default input size of 128 × 128. Then, given an LR weeds image, we rescale to default input size by applying the bicubic interpolation or the SRCNN model. We analyze these two approaches on the Chonnam National University (CNU) weeds dataset and find that SRCNN is suitable for the image size is smaller than 80 × 80, while bicubic interpolation is convenient for a larger image.

Feature Selection and Hyper-Parameter Tuning for Optimizing Decision Tree Algorithm on Heart Disease Classification

  • Tsehay Admassu Assegie;Sushma S.J;Bhavya B.G;Padmashree S
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.150-154
    • /
    • 2024
  • In recent years, there are extensive researches on the applications of machine learning to the automation and decision support for medical experts during disease detection. However, the performance of machine learning still needs improvement so that machine learning model produces result that is more accurate and reliable for disease detection. Selecting the hyper-parameter that could produce the possible maximum classification accuracy on medical dataset is the most challenging task in developing decision support systems with machine learning algorithms for medical dataset classification. Moreover, selecting the features that best characterizes a disease is another challenge in developing machine-learning model with better classification accuracy. In this study, we have proposed an optimized decision tree model for heart disease classification by using heart disease dataset collected from kaggle data repository. The proposed model is evaluated and experimental test reveals that the performance of decision tree improves when an optimal number of features are used for training. Overall, the accuracy of the proposed decision tree model is 98.2% for heart disease classification.

Customer Level Classification Model Using Ordinal Multiclass Support Vector Machines

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Asia pacific journal of information systems
    • /
    • v.20 no.2
    • /
    • pp.23-37
    • /
    • 2010
  • Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, however, have only considered nominal classification problems. Thus, these approaches have been limited by the existence of multiclass classification problems where classes are not nominal but ordinal in real world, such as corporate bond rating and multiclass customer classification. In this study, we adopt a novel multiclass SVM which can address ordinal classification problems using ordinal pairwise partitioning (OPP). The proposed model in our study may use fewer classifiers, but it classifies more accurately because it considers the characteristics of the order of the classes. Although it can be applied to all kinds of ordinal multiclass classification problems, most prior studies have applied it to finance area like bond rating. Thus, this study applies it to a real world customer level classification case for implementing customer relationship management. The result shows that the ordinal multiclass SVM model may also be effective for customer level classification.

Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents (학습문서의 개수에 따른 편차기반 분류방법의 분류 정확도)

  • Lee, Yong-Bae
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.325-332
    • /
    • 2014
  • It is generally accepted that classification accuracy is affected by the number of learning documents, but there are few studies that show how this influences automatic text classification. This study is focused on evaluating the deviation-based classification model which is developed recently for genre-based classification and comparing it to other classification algorithms with the changing number of training documents. Experiment results show that the deviation-based classification model performs with a superior accuracy of 0.8 from categorizing 7 genres with only 21 training documents. This exceeds the accuracy of Bayesian and SVM. The Deviation-based classification model obtains strong feature selection capability even with small number of training documents because it learns subject information within genre while other methods use different learning process.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

Pest Control System using Deep Learning Image Classification Method

  • Moon, Backsan;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • In this paper, we propose a layer structure of a pest image classifier model using CNN (Convolutional Neural Network) and background removal image processing algorithm for improving classification accuracy in order to build a smart monitoring system for pine wilt pest control. In this study, we have constructed and trained a CNN classifier model by collecting image data of pine wilt pest mediators, and experimented to verify the classification accuracy of the model and the effect of the proposed classification algorithm. Experimental results showed that the proposed method successfully detected and preprocessed the region of the object accurately for all the test images, resulting in showing classification accuracy of about 98.91%. This study shows that the layer structure of the proposed CNN classifier model classified the targeted pest image effectively in various environments. In the field test using the Smart Trap for capturing the pine wilt pest mediators, the proposed classification algorithm is effective in the real environment, showing a classification accuracy of 88.25%, which is improved by about 8.12% according to whether the image cropping preprocessing is performed. Ultimately, we will proceed with procedures to apply the techniques and verify the functionality to field tests on various sites.