• Title/Summary/Keyword: clamped beams

Search Result 100, Processing Time 0.025 seconds

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Effects of dead loads on dynamic analyses of beams

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.411-425
    • /
    • 2010
  • The effect of dead loads on dynamic responses of uniform elastic beams is examined by means of a governing equation which takes into account initial bending stress due to dead loads. First, the governing equation of beams which includes the effect of dead loads is briefly presented from the author's paper (Takabatake 1990). In the formulation the effect of dead loads is considered by strain energy produced by conservative initial stresses produced by the dead loads. Second, the effect of dead loads on dynamical responses produced by live loads in simply supported beams and clamped beams is confirmed by the results of numerical computations with the Galerkin method and Wilson-${\theta}$ method. It is shown that the dynamical responses, like dynamic deflections and bending moments produced by dynamic live loads, are decreased in a heavyweight beam when the effect of dead loads is included. Third, an approximate solution for dynamic deflections including the effect of dead loads is presented in closed-form. The proposed solution shows good in agreement with results of numerical computations with the Galerkin method and Wilson-${\theta}$ method. Finally, a method reflecting the effect of dead loads for dynamic responses of beams on the magnitude of live loads is presented by an example.

Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation

  • Setoodeh, AliReza;Rezaei, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.209-220
    • /
    • 2017
  • The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton's principle is employed to obtain nonlinear governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The variation of two-constituent material along the thickness is modeled using Reddy's power-law. Also, the Mori-Tanaka method as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs.

A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams

  • Bellifa, Hichem;Benrahou, Kouider Halim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • In this work, a nonlocal zeroth-order shear deformation theory is developed for the nonlinear postbuckling behavior of nanoscale beams. The beauty of this formulation is that, in addition to including the nonlocal effect according to the nonlocal elasticity theory of Eringen, the shear deformation effect is considered in the axial displacement within the use of shear forces instead of rotational displacement like in existing shear deformation theories. The principle of virtual work together of the nonlocal differential constitutive relations of Eringen, are considered to obtain the equations of equilibrium. Closed-form solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state for simply supported and clamped clamped nanoscale beams are determined.

Out-of-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 면외 진동해석)

  • Kang, Ki-Jun;Kim, Jang-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.417-425
    • /
    • 2007
  • The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM provides good accuracy even when only a limited number of grid points is used.

Response of low-temperature steel beams subjected to single and repeated lateral impacts

  • Truong, Dac Dung;Jung, Hae-Jung;Shin, Hyun Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.670-682
    • /
    • 2018
  • This paper presents the experimental and numerical investigation results of the response of low-temperature steel (LT-FH32 grade steel) beams under repeated impacts at room temperature and a single impact at a sub-zero temperature. After conducting tensile tests at room and sub-zero, repeated impact tests were conducted on two clamped single-beam models at room temperature, and single-impact tests of two other clamped single-beam models were conducted at $-50^{\circ}C$. The single and repeated impact tests were conducted by releasing a knife-edge striker using a drop testing machine. The permanent deflection of the model measured after each impact gradually increased with increasing number of impacts. Under the reduced temperature, the permanent deflection of the models slightly decreased. The numerical analyses were also performed to predict the damage response of the tested single-beam models. A comparison of the numerical prediction with those of experiments showed quite reasonable agreement.

In-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.793-800
    • /
    • 2006
  • DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of motion governing the free in-plane vibration fur circular curved beams including both rotatory inertia and shear deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1185-1191
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against the beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback(DVFB) control strategy is not clearly defined so far. It is well known that DVFB control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated Pairs of piezoelectric actuators (20, 50 and 100 mm long) and accelerometers installed on three identical clamped-clamped beams($30{\times}20{\times}1mm$). The response of each sensor-actuator pair requires strictly positive real(SPR) property to apply a high feedback gain. However the length of the piezoactuator affects the SPR property of the sensor-actuator response. Intensive simulation and experiment show the effect of the actuator length variation is strongly related with the frequency range of the SPR property. Thus an optimal length ratio was suggested to obtain relevant performance with a good stability under the DVFB strategy.

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.111-130
    • /
    • 2014
  • The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.