• 제목/요약/키워드: clamp circuit

검색결과 143건 처리시간 0.024초

A Novel Circuit for Characteristics Measurement of SiC Transistors

  • Cao, Guoen;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1332-1342
    • /
    • 2014
  • This paper proposes a novel test circuit for SiC transistors. On-state resistance under practical application conditions is an important characteristic for the device reliability and conduction efficiency of SiC transistors. In order to measure the on-state resistance in practical applications, high voltage is needed, and high current is also necessary to ignite performance for the devices. A soft-switching circuit based on synchronous buck topology is developed in this paper. To provide high-voltage and high-current stresses for the devices without additional spikes and oscillations, a resonant circuit has been introduced. Using the novel circuit technology, soft-switching can be successfully realized for all the switches. Furthermore, in order to achieve accurate measurement of on-state resistance under switching operations, an active clamp circuit is employed. Operation principle and design analysis of the circuit are discussed. The dynamic measurement method is illustrated in detail. Simulation and experiments were carried out to verify the feasibility of the circuit. A special test circuit has been developed and built. Experimental results confirm that the proposed circuit gives a good insight of the devices performance in real applications.

비냉각 열 영상 시트템용 BSCT $320{\times}240$ IR-FPA의 구현 (Implementation of BSCT $320{\times}240$ IR-FPA for Uncooled Thermal Imaging System)

  • 강대석;신경욱;박재우;윤동한;송성해;한명수
    • 대한전자공학회논문지SD
    • /
    • 제39권11호
    • /
    • pp.7-13
    • /
    • 2002
  • 적외선 열 영상 system에서 가장 핵심이 되는 BSCT 320X240 IRFPA를 구현하였다. 검출기 module은 두 개의 부분, 즉 적외선 감지 pixel의 array와 감지된 신호를 읽어내는 ROIC로 구성된다. 50-${\mu}m$의 pitch와 95-%의 fill-factor를 만족하도록, laser scriber공정과 10-${\mu}m$ 크기의 ball을 갖는 micro bump공정을 적용하였다. ROIC는 선택된 신호를 읽어서 순차적으로 출력하게 설계되었으며, 단일 transistor amplifier, HPF, tunable LPF 그리고 clamp circuit를 삽입하여 SNR이 개선되도록 설계하였다. Detector와 ROIC의 결합으로 제작된 hybrid chip은 좀더 안정한 동작을 하도록 TEC가 내장된 ceramic package에 탑재하였다. 제작된 IRFPA sample은 원하는 특성을 만족하였으며, 특히 fill-factor, 탐지도, 반응도면에서 설계의 목표에 잘 근사함을 알 수 있었다.

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

  • Han, Sang-Woo;Park, Sung-Hoon;Kim, Hyun-Seop;Lim, Jongtae;Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.221-225
    • /
    • 2016
  • This paper reports a new method to enable the normally-off operation of AlGaN/GaN heterojunction field-effect transistors (HFETs). A capacitor was connected to the gate input node of a normally-on AlGaN/GaN HFET with a Schottky gate where the Schottky gate acted as a clamping diode. The combination of the capacitor and Schottky gate functioned as a clamp circuit to downshift the input signal to enable the normally-off operation. The normally-off operation with a virtual threshold voltage of 5.3 V was successfully demonstrated with excellent dynamic switching characteristics.

V2G 응용을 위한 능동클램프 회로를 가진 양방향 하이브리드 스위칭 풀브리지 컨버터 (A Bidirectional Hybrid Switching Full-Bridge Converter with Active Clamp Circuit for V2G Applications)

  • 도안반투안;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.335-336
    • /
    • 2016
  • This paper introduces a bidirectional full-bridge converter with new active damp structure. The proposed active damp circuit can damp the oscillating voltage across the rectifier diodes with a smaller voltage stress of the damping capacitor and eliminate the circulating current. In addition, the proposed converter can achieve additional advantages such as nearly ZCS switching for leading-leg switches and no recovery current for rectifier-bridge by the suitable design of the damp capacitor to resonate with leakage inductor. Since the ZVS is achieved for both leading-leg and lagging-leg switches by the magnetizing current of the transformer, it can be achieved regardless of the load variation. A 3.3 kW prototype converter is implemented for vehicle-to-grid (V2G) application and the advantages of the proposed converter are verified by the experiments. The maximum efficiencies of 98.2% and 97.6% have been achieved for the buck mode and boost mode operation, respectively.

  • PDF

대전력 응용을 위한 새로운 ZVZCS PWM 컨버어터 (New ZVZCS PWM Converter For High Power Application)

  • 류홍제;조정구;유동욱;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.521-524
    • /
    • 1996
  • A new zero voltage and nero current switching(ZVZCS) full bridge(FB) PWM converter b proposed to improve the performance of the previously presented ZVZCS-FB-PWM converters [7,8]. By adding a secondary active clamp and controlling the clamp switch moderately, ZVS(for leading-leg switches) are ZCS(for lagging-leg switches) are achieved without nay lossy components, the reverie avalanche break down of leading-leg IGBTs[7] or the saturable reactor in the primary[8]. Many advantages including simple circuit topology, high efficiency, and low cost mate the new converter attractive for high voltage and high power(> 10 kW) applications. The principle of operation is explained and analyzed. The features and design considerations of the new converter are also illustrated and verified on an 1.8 kW, 100 kHz IGBT based experimental circuit.

  • PDF

A Study on Implementing a Phase-Shift Full-Bridge Converter Employing an Asynchronous Active Clamp Circuit

  • Lee, Yong-Chul;Kim, Hong-Kwon;Kim, Jin-Ho;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.413-420
    • /
    • 2014
  • The conventional Phase-Shift Full-Bridge (PSFB) converter has a serious voltage spike because of the ringing between the leakage inductance of the transformer and the parasitic output capacitance of the secondary side rectifier switches. To overcome this problem, an asynchronous active clamp technique employing an auxiliary DC/DC converter has been proposed. However, an exact analyses for designing the auxiliary DC/DC converter has not been presented. Therefore, the amount of power that is supposed to be handled in the auxiliary DC/DC converter is calculated through a precise mode analyses in this paper. In addition, this paper proposes a lossy snubber circuit with hysteresis characteristics to reduce the burden that the auxiliary DC/DC converter should take during the starting interval. This technique results in optimizing the size of the magnetic component of the auxiliary DC/DC converter. The operational principles and the theoretical analyses are validated through experiments with a 48V-to-30V/15A prototype.

Zero-Voltage-Transition Buck Converter for High Step-Down DC-DC Conversion with Low EMI

  • Ariyan, Ali;Yazdani, Mohammad Rouhollah
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this study, a new zero-voltage transition (ZVT) buck converter with coupled inductor using a synchronous rectifier and a lossless clamp circuit is proposed. The regular buck converter with tapped inductor has extended duty cycle for high step-down applications. However, the leakage inductance of the coupled inductor produced considerable voltage spikes across the switch. A lossless clamp circuit is used in the proposed converter to overcome this problem. The freewheeling diode was replaced with a synchronous rectifier to reduce conduction losses in the proposed converter. ZVT conditions at turn-on and turn-off instants were provided for the main switch. The synchronous rectifier switch turned on under zero-voltage switching, and the auxiliary switch turn-on and turn-off were under zero-current condition. Experimental results of a 100 W-100 kHz prototype are provided to justify the validity of the theoretical analysis. Moreover, the conducted electromagnetic interference of the proposed converter is measured and compared with its hard-switching counterpart.

2차측 보조 회로를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Auxiliary Circuit)

  • 배진용;김용;권순도;김필수;이은영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-323
    • /
    • 2001
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor and two small diode, is added in the secondary to provides ZVZCS conditions to primary switches, and aids to clamp secondary rectifier voltage. The auxiliary circuit Includes neither lossy component nor addition active switch, which makes the proposed converter efficient and effective. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 500W 50kHz prototype converter.

  • PDF

Analysis of a Parasitic-Diode-Triggered Electrostatic Discharge Protection Circuit for 12 V Applications

  • Song, Bo Bae;Lee, Byung Seok;Yang, Yil Suk;Koo, Yong-Seo
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.746-755
    • /
    • 2017
  • In this paper, an electrostatic discharge (ESD) protection circuit is designed for use as a 12 V power clamp by using a parasitic-diode-triggered silicon controlled rectifier. The breakdown voltage and trigger voltage ($V_t$) of the proposed ESD protection circuit are improved by varying the length between the n-well and the p-well, and by adding $n^+/p^+$ floating regions. Moreover, the holding voltage ($V_h$) is improved by using segmented technology. The proposed circuit was fabricated using a $0.18-{\mu}m$ bipolar-CMOS-DMOS process with a width of $100{\mu}m$. The electrical characteristics and robustness of the proposed ESD circuit were analyzed using transmission line pulse measurements and an ESD pulse generator. The electrical characteristics of the proposed circuit were also analyzed at high temperature (300 K to 500 K) to verify thermal performance. After optimization, the $V_t$ of the proposed circuit increased from 14 V to 27.8 V, and $V_h$ increased from 5.3 V to 13.6 V. The proposed circuit exhibited good robustness characteristics, enduring human-body-model surges at 7.4 kV and machine-model surges at 450 V.

능동 클램프 전류원 하프 브릿지 기반 태양광 모듈 집적형 전력변환장치에 대한 연구 (Study On Photovoltaic Module Integrated Converter based on Active Clamp Current-fed Half-Bridge Converter)

  • 정훈영;박정규;지용혁;원충연;이태원
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.105-113
    • /
    • 2011
  • 태양광 발전 시스템이 대용량화됨에 따라 태양전지 어레이 구성 시 부정합(mismatch) 문제가 대두되는 가운데, 태양전지 모듈을 직접 계통에 연계하는 AC 모듈형 태양광 모듈 집적형 전력변환장치(PV-MIC)에 관한 연구가 지속되고 있다. PV-MIC는 수명 및 고효율이 가장 큰 문제이며 이 문제를 해결하기 위해서 본 논문에서는 ZVS 동작을 통하여 스위칭 손실을 저감시키고 입력전류 리플감소를 통하여 입력 커패시턴스를 저감할 수 있는 능동 클램프 전류원 하프 브릿지 컨버터를 적용한 PV-MIC를 제안하고, 이에 관한 제어분담 및 설계에 대하여 고찰한다.