• 제목/요약/키워드: clamp

검색결과 1,108건 처리시간 0.02초

이단계 크리깅 모델을 이용한 조(Jaw)의 구조최적설계 (Structural Optimization for a Jaw Using the Kriging model)

  • 이권희;방일권;강동헌;한동섭;한근조
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 추계학술대회 논문집(제2권)
    • /
    • pp.143-147
    • /
    • 2006
  • 컨테이너의 양 ${\cdot}$ 하역 작업 시 크레인을 정 위치에 고정시키고, 돌풍으로 인해 크레인이 레일방향으로 미끄러지는 것을 방지하는 장치가 레일클램프이다. 쐐기형 레일클램프는 풍속이 증가하면 쐐기작용에 의해 압착력이 증가하므로 구조적으로 안정성과 내구성이 있게 설계해야한다. 따라서 본 연구에서는 순차적 표본방법을 기반으로 하는 크리깅 모델을 이용하여 조 형상최적설계를 수행하였다. 크리깅은 표본점의 반응치를 기초로 내삽법에 의해 임의의 점에서의 반응치를 예측하는 근사기법의 하나이다. 이것은 최적설계 분야에서 자주 사용되는 근사기법인 반응표면법에 비해 반응치의 보다 정확한 예측이 가능하며 특히 비선형성이 강한 함수의 예측에 적합하다고 알려져 있다. 순차적 크리깅 모델에 의하여 구해진 최적해를 상용프로그램을 이용하여 구한 최적해와 비교하고 제안된 방법의 유용성을 검토하였다.

  • PDF

Effects of Non-protein Energy Intake on the Concentrations of Plasma Metabolites and Insulin, and Tissue Responsiveness and Sensitivity to Insulin in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki;Shiga, Akio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.1010-1018
    • /
    • 2006
  • A glucose clamp technique was used to investigate the effects of non-protein energy intake on tissue responsiveness and sensitivity to insulin for glucose metabolism in intact adults male goats. Three goats were fed diets at 1.0, 1.5 and 2.0 times of ME for maintenance, each for 21 d. Crude protein intake was 1.5 times of maintenance requirement in each treatment. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion, beginning at 13 h after feeding. Concentrations of plasma metabolites and insulin were also measured at 3, 6 and 13 h after feeding, for evaluating effects of non-protein energy intake on the metabolic status of the animals. Increasing non-protein energy intake prevented an increase in plasma NEFA concentration at 13 h after feeding (p = 0.03). Plasma urea-nitrogen and total amino-nitrogen concentrations decreased (p<0.01) and increased (p = 0.03), respectively, with increasing non-protein energy intake across time relating to feeding. Plasma insulin concentration was unaffected (p = 0.43) by non-protein energy intake regardless of time relating to feeding. In the glucose clamp experiment, increasing non-protein energy intake decreased numerically (p = 0.12) the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity), but did not affect (p = 0.60) maximal glucose infusion rate (tissue responsiveness to insulin). The present results suggest that an increase in non-protein energy intake may enhance insulin sensitivity for glucose metabolism, unlike responsiveness to insulin, in adult male goats. The possible enhancement in insulin sensitivity may play a role in establishing anabolic status in the body, when excess energy is supplied to the body.

Electroencephalographic Correlation Dimension Changes with Depth of Halothane

  • Lee, Maan-Gee;Park, Eun-Ju;Choi, Jung-Mee;Yoon, Moon-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권5호
    • /
    • pp.491-499
    • /
    • 1999
  • This study was designed to evaluate the efficacy of dynamic parameters, such as correlation dimension $D_2,$ by comparing spectral electroencephalographic (EEG) parameters. These parameters are used to estimate the depth of halothane anesthesia as defined by the presence of body movement in response to a tail clamp. Six rats were used and each of them was exposed to halothane sequentially at the concentrations of 0%, 0.5%, 1.0% and 1.5% for 30 min. A tail clamp was applied every five min and the movements were recorded at each concentration level. The spectral parameters and the dynamic parameters were derived from 20-sec and 10-sec segments, respectively, from the last 5-mins of EEG recording at each concentration level. Correlation coefficients between the parameters and the movements were calculated. Standardized values of three parameters, betaL power, median power frequency (MPF), and $D_2$ were derived by calculation based on the number of animals showing the movement in response to a tail clamp. The betaL power had the largest correlation coefficient to spontaneous movement and to the response to a tail clamp than any other band parameter. MPF had a better correlation with the movement than 90% spectral edge frequency. Among the dynamic parameters, $D_2$ on the parietal cortex had a better correlation with the movement. The level of deviation and variation of standardized $D_2,$ MPF, and betaL were significant (p<0.01). The order of deviation and variation was; betaL power > MPF > $D_2.$ The correlation dimension serves as a better index for the depth of halothane anesthesia defined in forms of a response to external stimulation.

  • PDF

Effects of human growth hormone on gonadotropin-releasing hormone neurons in mice

  • Bhattarai, Janardhan P.;Kim, Shin-Hye;Han, Seong-Kyu;Park, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • 제53권9호
    • /
    • pp.845-851
    • /
    • 2010
  • Purpose: Recombinant human growth hormone (rhGH) has been widely used to treat short stature. However, there are some concerns that growth hormone treatment may induce skeletal maturation and early onset of puberty. In this study, we investigated whether rhGH can directly affect the neuronal activities of of gonadotropin-releasing hormone (GnRH). Methods: We performed brain slice gramicidin-perforated current clamp recording to examine the direct membrane effects of rhGH on GnRH neurons, and a whole-cell voltage-clamp recording to examine the effects of rhGH on spontaneous postsynaptic events and holding currents in immature (postnatal days 13-21) and adult (postnatal days 42-73) mice. Results: In immature mice, all 5 GnRH neurons recorded in gramicidin-perforated current clamp mode showed no membrane potential changes on application of rhGH (0.4, $1{\mu}g/mL$). In adult GnRH neurons, 7 (78%) of 9 neurons tested showed no response to rhGH ($0.2-1{\mu}g/mL$) and 2 neurons showed slight depolarization. In 9 (90%) of 10 immature neurons tested, rhGH did not induce any membrane holding current changes or spontaneous postsynaptic currents (sPSCs). There was no change in sPSCs and holding current in 4 of 5 adult GnRH neurons. Conclusion: These findings demonstrate that rhGH does not directly affect the GnRH neuronal activities in our experimental model.

Effects of Noradrenaline on the Membrane Potential of Prostatic Neuroendocrine Cells of Rat

  • Kim, Jun-Hee;Shin, Sun-Young;Uhm, Dae-Yong;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 2003
  • The prostate gland contains numerous neuroendocrine cells that are believed to influence the function of the prostate gland. Our recent study demonstrated the expression of both ${\alpha}1$- and ${\alpha}2$-ARs, signaling the release of stored $Ca^{2+}$ and the inhibition of N-type $Ca^{2+}$ channels, respectively, in rat prostate neuroendocrine cells (RPNECs). In this study, the effects of NA on the resting membrane potential (RMP) of RPNECs were investigated using a whole-cell patch clamp method. Fresh RPNECs were dissociated from the ventral lobe of rat prostate and identified from its characteristic shape; round or oval shape with dark cytoplasm. Under zero-current clamp conditions with KCl pipette solution, the resting membrane potential (RMP) of RPNECs was between -35 mV and -85 mV. In those RPNECs with relatively hyperpolarized RMP (<-60 mV), the application of noradrenaline (NA, $1{\mu}M$) depolarized the membrane to around -40 mV. In contrast, the RPNECs with relatively depolarized RMP (>-45 mV) showed a transient hyperpolarization and subsequent fluctuation at around -40 mV on application of NA. Under voltage clamp conditions (holding voltage, -40 mV) with CsCl pipette solution, NA evoked a slight inward current (<-20 pA). NA induced a sharp increase of cytosolic $Ca^{2+}$ concentration ($[Ca^{2+}]_c$), measured by the fura-2 fluorescence, and the voltage clamp study showed the presence of charybdotoxin-sensitive $Ca^{2+}$-activated $K^+$ currents. In summary, adrenergic stimulation induced either depolarization or hyperpolarization of RPNECs, depending on the initial level of RMP. The inward current evoked by NA and the $Ca^{2+}$-activated $K^+$ current might partly explain the depolarization and hyperpolarization, respectively.

Roles of Metabotropic Glutamate Receptors 1 and 5 in Rat Medial Vestibular Nucleus Neurons

  • Lee, Hae-In;Lee, Sung-Hyo;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제36권2호
    • /
    • pp.71-78
    • /
    • 2011
  • Using whole cell current- and voltage-clamp recording we investigated the characteristics and pharmacology of group I metabotropic glutamate receptor (mGluR)-mediated responses in rat medial vestibular nucleus (MVN) neurons. In current clamp conditions, activation of mGluR I by application of the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induced a direct excitation of MVN neurons that is characterized by depolarization and increased spontaneous firing frequency. To identify which of mGluR subtypes are responsible for the various actions of DHPG in MVN, we used two subtype-selective antagonists. (S)-(+)- alpha-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist that is selective for mGluR5. In voltage clamp conditions, DHPG application increased the frequency of spontaneous and miniature inhibitory postsynaptic currents (IPSCs) but had no effect on amplitude distributions. Antagonism of the DHPG-induced increase of miniature IPSCs required the blockade of both mGluR1 and mGluR5. DHPG application induced an inward current, which can be enhanced under depolarized conditions. DHPG-induced current was blocked by LY367385, but not by MPEP. Both LY367385 and MPEP antagonized the DHPG-induced suppression of the calcium activated potassium current ($I_{AHP}$). These data suggest that mGluR1 and mGluR5 have similar roles in the regulation of the excitability of MVN neurons, and show a little distinct. Furthermore, mGluR I, via pre- and postsynaptic actions, have the potential to modulate the functions of the MVN.

능동 클램프 전류형 하프 브리지 컨버터를 적용한 연료전지 발전시스템 (Fuel Cell Generation Systems with Active Clamp Current fed Half Bridge Converter)

  • 장수진;김진태;이태원;이병국;원충연
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.78-86
    • /
    • 2005
  • 최근 들어, 저전압·대전류 출력 특성을 갖는 연료전지를 위한 새로운 발전시스템이 주목받고 있다. 연료전지 발전시스템에서는 dc-dc 승압용 컨버터와 dc-ac 인버터가 필요하다. 그러므로 본 논문에서는 연료전지 발전시스템을 위한 ZVS 동작을 가진 dc-dc 능동 클램프 전류형 하프 브리지 컨버터를 제안하였다. 제안된 컨버터는 일반적인 dc-dc 컨버터에 비해 높은 효율과 높은 소자 이용율을 가진다. 연료전지 발전시스템은 연료전지(PEMFC)의 낮은 전압(28∼43[Vdc])을 380[Vdc]로 승압하기 위한 능동 클램프 전류형 하프 브리지 컨버터로 구성하였다. 단상 풀 브리지 인버터는 220[Vac], 60[Hz] 교류 출력을 얻기 위해 적용하였다.

Inhibitory actions of borneol on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice

  • Nguyen, Phuong Thao Thi;Jang, Seon Hui;Rijal, Santosh;Park, Soo Joung;Han, Seong Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.433-440
    • /
    • 2020
  • The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is the first relay site for the orofacial nociceptive inputs via the thin myelinated Aδ and unmyelinated C primary afferent fibers. Borneol, one of the valuable time-honored herbal ingredients in traditional Chinese medicine, is a popular treatment for anxiety, anesthesia, and antinociception. However, to date, little is known as to how borneol acts on the SG neurons of the Vc. To close this gap, the whole-cell patch-clamp technique was applied to elucidate the antinociceptive mechanism responding for the actions of borneol on the SG neurons of the Vc in mice. In the voltage-clamp mode, holding at -60 mV, the borneol-induced non-desensitizing inward currents were not affected by tetrodotoxin, a voltage-gated Na+ channel blocker, 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-ᴅ-aspartate (NMDA) glutamate receptor antagonist and DL-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. However, borneol-induced inward currents were partially decreased in the presence of picrotoxin, a γ-aminobutyric acid (GABA)A receptor antagonist, or strychnine, a glycine receptor antagonist, and was almost suppressed in the presence of picrotoxin and strychnine. Though borneol did not show any effect on the glycine-induced inward currents, borneol enhanced GABA-mediated responses. Beside, borneol enhanced the GABA-induced hyperpolarization under the current-clamp mode. Altogether, we suggest that borneol contributes in part toward mediating the inhibitory GABA and glycine transmission on the SG neurons of the Vc and may serve as an herbal therapeutic for orofacial pain ailments.

Comparative study of off-clamp, laparoscopic partial nephrectomy (OCLPN) and conventional hilar control, laparoscopic partial nephrectomy (HCLPN) for renal tumors: One-year follow-up results of renal function change

  • Kang, Su Hwan;Rhew, Hyun Yul;Kim, Taek Sang
    • 고신대학교 의과대학 학술지
    • /
    • 제33권2호
    • /
    • pp.191-199
    • /
    • 2018
  • Objectives: We designed the study to compare the oncologic and renal function outcomes of off-clamp, laparoscopic partial nephrectomy (OCLPN) and conventional laparoscopic partial nephrectomy (HCLPN) for renal tumors. Methods: Between March 2008 and July 2015, 114 patients who underwent laparoscopic partial nephrectomy (LPN) of a renal neoplasm were studied. We performed LPN without hilar clamp on 40 patients (OCLPN, Group 1), and conventional LPN with hilar control and renorrhaphy on another 40 patients (HCLPN, Group 2). We retrospectively reviewed the medical records of each patient's age, sex, R.E.N.A.L. nephrometry score (RNS), operation time, complications, hospitalization period, tumor size, positive resection margin, histologic classification of tumor, pathologic stage, Fuhrman grade, estimated blood loss (EBL), warm ischemic time (WIT), and estimated glomerular filtration rate (eGFR) before and one year after surgery. Results: There were no significant differences in age, sex, preoperative eGFR, EBL, surgical (anesthesia) time, and tumor size between the two groups. The mean eGFR was not significantly different between the OCLPN and HCLPN groups 1 month (95 and $86.2mL/min/1.73m^2$, respectively; P = 0.106), 6 months (92.9 and $83.6mL/min/1.73m^2$, respectively; P = 0.151) and 12 months (93.8 and $84.7mL/min/1.73m^2$, respectively; P = 0.077) postoperatively. The change in eGFR after one year was 3.9% in the OCLPN group and -7.9% in the HCLPN group. Conclusions: OCLPN was superior to HCLPN in preserving renal function one year after surgery, and there was no statistically significant difference in tumor treatment results.

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.