• 제목/요약/키워드: cis-regulatory element

검색결과 26건 처리시간 0.026초

Conservation of cis-Regulatory Element Controlling Timely Translation in the 3'-UTR of Selected Mammalian Maternal Transcripts

  • Lee, Hyun-Joo;Lim, Yoon-Ki;Chang, Sang-Ho;Min, Kwan-Sik;Han, Ching-Tack;Hwang, Sue-Yun
    • Genomics & Informatics
    • /
    • 제5권4호
    • /
    • pp.174-178
    • /
    • 2007
  • The earliest stages of mammalian embryogenesis are governed by the activity of maternally inherited transcripts and proteins. Cytoplasmic polyadenylation of selected maternal mRNA has been reported to be a major control mechanism of delayed translation during preimplantation embryogenesis in mice. The presence of cis-elements required for cytoplasmic polyadenylation (e.g., CPE) can serve as a useful tag in the screening of maternal genes partaking in key functions in the transcriptionally dormant egg and early embryo. However, due to its relative simplicity, UA-rich sequences satisfying the canonical rule of known CPE consensus sequences are often found in the 3'-UTR of maternal transcripts that do not actually undergo cytoplasmic polyadenylation. In this study, we developed a method to confirm the validity of candidate CPE sequences in a given gene by a multiplex comparison of 3'-UTR sequences between mammalian homologs. We found that genes undergoing cytoplasmic polyadenylation tend to create a conserved block around the CPE, while CPE-like sequences in the 3'-UTR of genes lacking cytoplasmic polyadenylation do not exhibit such conservation between species. Through this cross-species comparison, we also identified an alternative CPE in the 3'-UTR of tissue-type plasminogen activator (tPA), which is more likely to serve as a functional element. We suggest that verification of CPEs based on sequence conservation can provide a convenient tool for mass screening of factors governing the earliest processes of mammalian embryogenesis.

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • 제16권3호
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

현사시나무(Populus alba × P. glandulosa)에서 분리한 non-specific Lipid Transfer Protein (ns-LTP) 프로모터의 특성 분석 (Characterization of a non-specific Lipid Transfer Protein (ns-LTP) promoter from poplar (Populus alba × P. glandulosa))

  • 조진성;노설아;최영임
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.356-363
    • /
    • 2015
  • 나무의 유전 공학적 연구를 위해서는 목본 고유의 유전자 및 프로모터 연구가 필수적이다. 우리는 포플러(P. alba ${\times}$ P. glandulosa)의 Pagns-LTP 유전자의 867 bp 프로모터를 분리하였고, ${\beta}$-glucuronidase (GUS) reporter 유전자를 이용한 프로모터의 형질전환 포플러를 제작하여 특성 분석하였다. Pagns-LTP 유전자는 어린뿌리에서 강하게 발현되었고 어린잎에서는 약하게 발현되었으며, 그밖에 다른 조직에서는 발현되지 않았다. 또한, 프로모터의 활성은 뿌리와 어린잎에서 한정되었으며 어린뿌리의 세포 전체에서 강한 활성을 나타내었다. 이에 포플러 ns-LTP 프로모터 내의 cis-element를 조사하고 현사시나무에서 Pagns-LTP 프로모터를 분리한 후 활성을 분석하였다. 프로모터 내의 cis-element를 분석한 결과, 조직 특이적 발현과 호르몬 및 스트레스에 반응하는 다양한 cis-element가 존재함을 확인하였다. 이를 통해 포플러의 ns-LTP는 생장뿐만 아니라, 스트레스에도 관여할 것이라고 추측할 수 있었다. 본 연구는 목본의 유전자 기능 분석 및 다양한 응용 연구를 위해 유용하게 이용될 수 있는 도구로서의 가능성을 제시하였다.

An Important Role of Nrf2-ARE Pathway in the Cellular Defense Mechanism

  • Lee, Jong-Min;Johnson, Jeffrey A.
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.139-143
    • /
    • 2004
  • The antioxidant responsive element (ARE) is a cis-acting regulatory element of genes encoding phase II detoxification enzymes and antioxidant proteins, such as NAD(P)H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate-cysteine ligase. Interestingly, it has been reported that Nrf2 (NF-E2-related factor 2) regulates a wide array of ARE-driven genes in various cell types. Nrf2 is a basic leucine zipper transcription factor, which was originally identified as a binding protein of locus control region of ss-globin gene. The DNA binding sequence of Nrf2 and ARE sequence are very similar, and many studies demonstrated that Nrf2 binds to the ARE sites leading to up-regulation of downstream genes. The function of Nrf2 and its downstream target genes suggests that the Nrf2-ARE pathway is important in the cellular antioxidant defense system. In support of this, many studies showed a critical role of Nrf2 in cellular protection and anti-carcinogenicity, implying that the Nrf2-ARE pathway may serve as a therapeutic target for neurodegenerative diseases and cancers, in which oxidative stress is closely implicated.

폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites (DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene)

  • 이용철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제48권6호
    • /
    • pp.879-886
    • /
    • 2000
  • 연구배경: 폐특이 전사조절 유전자인 Thyroid Transcription Factor-1 (TTF-1)유전자는 폐에 선택적인 유전자의 표현의 조절에 중요한 전사인자로 작용하고 폐의 발생에서 morphogenic protein으로서 작용한다. 그러나 현재까지 이 TTF-1 유전자의 전사인자에 대한 연구는 거의 미미하다. DNase 1 hypersensitive(DH) regions은 활동적인 염색체에 대한 중요한 표식자이며 유전자를 조절하는 많은 DNA sequences와 밀접한 관계가 있다. 방법 : 추정적인 distal regulatory elements를 밝혀 내기 위해서 TTF-1을 표현하는 인간의 폐선암 세포주인 NCI-H441을 사용해 DNase 1 hypersensitive site assay를 이용하였다. 결과 : TTF-1 유전자에는 전사의 시작부위에서 +150, -450, -800, 그리고 -1500 base pair부위에 4곳의 DH sites가 있음을 할 수 있었다. 결론 : 이상의 결과로 전사 조절부위가 TTF-1 유전자 내에 그리고 5' prime부위에 위치함을 추정할 수 있었다.

  • PDF

No Role of Protected Region B of Human Cytochrome P4501A2 Gene (CYP1A2) As an AP-1 Response Element

  • Chung, In-Jae;Jung, Ki-Hwa
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.375-380
    • /
    • 2002
  • Cytochrome P4501A2 (CYP1A2) is a member of the cytochrome P450 family of isozymes involved in the phase I drug metabolism of vertebrates. CYP1A2 is responsible for the activation of a number of aromatic amines to mutagenic and carcinogenic forms. Thus, the level of CYP1A2, which varies among different populations, may determine an individual's susceptibility to these chemicals. We have previously reported on the importance of a cis element named PRB (protected region B) in the regulation of human Cytochrome P4501A2 (CYP1A2) gene, which appeared to act as a positive regulatory element. Closer examination of the PRB sequence (-2218 to -2187 bp) revealed a putative AP-1 binding site, TGACTAA, at -2212 bp (Chung and Bresnick, 1997). To elucidate the role of AP-1 in CYP1A2 regulation, we transiently overexpressed c-Jun and c-Fos transcription factors in human hepatoma HepG2 cells, and examined their influence on the CYP1A2 promoter activity by reporter gene assays. Cotransfection of the c-Jun and the c-Fos expression vectors increased the induced transactivation by five to six fold from the CYP1A2 promoter constructs. However, deletion of the PRB element did not affect the degree of activation by the c-Jun and the c-Fos. Therefore, it is unlikely that the c-Jun and the c-Fos activate the CYP1A2 promoter through this AP-1 consensus-like sequence in the PRB region.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권3호
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

감귤에서 분리한 Metallothionein 유전자의 발현분석 및 게놈 DNA (Expression Patterns and Isolation of Genomic DNA of a Metallothionein-like Gene from Citrus (Citrus unshiu Marc. cv. Miyagawa))

  • 김인중
    • 식물조직배양학회지
    • /
    • 제28권5호
    • /
    • pp.231-237
    • /
    • 2001
  • Differential screening을 통해 Moriguchi등 (1998)이 분리한 유전자와 상동성을 나타내는 CitMT45 유전자의 cDNA를 분리하였다. 본 실험에서 분리한 cDNA는 Moriguchi등 (1998)이 분리한 cDNA에 비해 긴 3' UTR을 가지고 있었다. 잎과 과피, 과육에서 CitMT45 유전자의 발현분석을 northern blot을 통해 수행한 결과, 발달단계에 따라 증가하는 비슷한 앙상을 관찰할 수 있었으나, 과육, 과피, 잎의 순으로 그 발현 양이 많았다. 이들의 발현조절에 대한 정보를 얻기 위해 게놈 DNA를 분리한 결과, CitMT45 게놈 구조는 3개의 exon과 2개의 intron으로 구성되어 있었고, primer extension 분석을 통해 CitMT45 유전자의 발현은 3개의 부위에서 개시되고 있음을 알 수 있었다. 전사개시부위의 5'upstream 지역에서 TATA box와 CCAAT box뿐만 아니라, 금속이온과 온도변화에 의한 조절에 중요한 부위로 알려진 cis-element를 발견하였다.

  • PDF

Characterization of biphenyl biodegradation, and regulation of iphenyl catabolism in alcaligenes xylosoxydans

  • Lee, Na-Ri;On, Hwa-Young;Jeong, Min-Seong;Kim, Chi-Kyung;Park, Yong-Keun;Ka, Jong-Ok;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • 제35권2호
    • /
    • pp.141-148
    • /
    • 1997
  • Alcaligenes xylosoxydans strain SMN3 capable of utilizing biphenyl grew not only on phenol, and benzoate, but also on salicylate. Catabolisms of biphenyl and salicylate appear to be interrelated since benzoate is a common metabolic intermediate of these compounds. Enzyme levels in the excatechol 2. 3-dioxygenas which is meta-cleavage enzyme of catechol, but did not induce catechol 1, 2-dioxygenase. All the oxidative enzymes of biphenyl and 2, 3,-dihydroxybiphenyl (23DHBP) were induced when the cells were grown on biphenyl and salicylate, respectively. Biphenyl and salicylate could be a good inducer in the oxidation of biphenyl and 2, 3-dihydroxybiphenyl. The two enzymes for the degradation of biphenyl and salicylate were induced after growth on either biphenyl or salicylate, suggesting the presence of a common regulatory element. However, benzoate could not induce the enzymes responsible for the oxidation of these compounds. Biphenyl and salicylate were good inducers for indigo formation due to the activity of biphenyl dioxygenase. These results suggested that indole oxidation is a property of bacterial dioxygenase that form cis-dihydrodiols from aromatic hydrocarbon including biphenyl.

  • PDF

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

  • Baek, Dongwon;Chun, Hyun Jin;Yun, Dae-Jin;Kim, Min Chul
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.697-705
    • /
    • 2017
  • The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.