• 제목/요약/키워드: circular symmetric modes

검색결과 12건 처리시간 0.024초

Application of Davidenko's Method to Rigorous Analysis of Leaky Modes in Circular Dielectric Rod Waveguides

  • Kim, Ki-Young;Tae, Heung-Sik;Lee, Jeong-Hae
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.199-206
    • /
    • 2003
  • Numerical solutions to complex characteristic equations are quite often required to solve electromagnetic wave problems. In general, two traditional complex root search algorithms, the Newton-Raphson method and the Muller method, are used to produce such solutions. However, when utilizing these two methods, the choice of the initial iteration value is very sensitive, otherwise, the iteration can fail to converge into a solution. Thus, as an alternative approach, where the selection of the initial iteration value is more relaxed and the computation speed is high, Davidenko's method is used to determine accurate complex propagation constants for leaky circular symmetric modes in circular dielectric rod waveguides. Based on a precise determination of the complex propagation constants, the leaky mode characteristics of several lower-order circular symmetric modes are then numerically analyzed. In addition, no modification of the characteristic equation is required for the application of Davidenko's method.

원형 충돌제트의 불안정 모드 (Unstable Modes of Impinging Circular Jets)

  • 권영필;임정빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.551-556
    • /
    • 1997
  • Based on the experiment for the frequency characteristics and the feedback theory of the impinging-tones, the unstable characteristics of the symmetric mode is analyzed among the various unstable modes of circular impinging jets. There are two different symmetric modes; one is the low-frequency mode S1 due to the vortex at the outside of the jet and the high-frequency mode S2 due to the inside vortex. Each mode has its own characterictics of convection speed decreasing with frequency.

  • PDF

고속 원형충돌제트의 불안정 특성 (Instabilities of High-speed Impinging Circular Jets)

  • 임정빈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.256-262
    • /
    • 1997
  • The characteristics of the unstable impinging circular jet were investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes Si and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed by measuring frequency and phase-distribution around the jet. Radiation characteristics of impinging-tone were studied by measuring axial directivity. It was founded that the radiation patterns of symmetric and helical mode are different and it is toward the plate as the impinging distance increased. By estimating the convection velocity of the unstable jet, it was founded that the convection speed decreases with the frequency and its decreasing pattern varies with unstable modes S1, S2 and H, respectively.

  • PDF

Guided Modes along Dispersive Double Negative (DNG) Metamaterial Columns

  • 김기영;태홍식;이정해
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.59-63
    • /
    • 2003
  • Modal properties of guided waves along circular dispersive double negative (DNG) index metamaterial rod waveguides are numerically investigated. Identical forms of dispersive dielectric and magnetic material constants are used for simplicity. For degenerated azimuthally symmetric mode, a multimode region, a single mode region, a band gap region and a forbidden region are found which cannot be observed in the case of the conventional dielectric rod waveguide. As the normalized frequency goes down, discrete guided modes are continuously generated, which is a reverse property of conventional dielectric rod waveguide. Also, there are high-frequency cutoffs, which have been generally examined in dispersive circular geometries such as a plasma column or a plasma Goubau line. In the single mode region, both the low- and high-frequency cutoffs are existed where the propagation constants are continued between the guided oscillating and surface modes.

  • PDF

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1345-1362
    • /
    • 2015
  • The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

Analysis of Planar Metal Plasmon Waveguides

  • Jung, Jae-Hoon
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.97-102
    • /
    • 2010
  • Propagation modes of symmetric metal-insulator-metal SPP waveguides are analyzed. Main characteristics of these waveguides such as mode effective index, propagation length, and penetration depths are calculated at the telecom wavelength for different layer thickness. We adopt Au, Al as a metal material and air, glass as a dielectric material and obtain different optical characteristics. The surface plasmon characteristics in this paper provide a numerical insight for designing nanostructure metal plasmon waveguide.

고속 충돌제트의 불안정특성 (Instability of High-Speed Impinging Jets(I))

  • 권영필
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

Mechanism of ovalling vibrations of cylindrical shells in cross flow

  • Uematsu, Yasushi;Tsujiguchi, Noboru;Yamada, Motohiko
    • Wind and Structures
    • /
    • 제4권2호
    • /
    • pp.85-100
    • /
    • 2001
  • The mechanism of wind-induced ovalling vibrations of cylindrical shells is numerically investigated by using a vortex method. The subject of this paper is limited to a two-dimensional structure in the subcritical regime. The aerodynamic stability of the ovalling vibrations in the second to fourth circumferential modes is discussed, based on the results of a forced-vibration test. In the analysis, two modal configurations are considered; one is symmetric and the other is anti-symmetric with respect to a diameter parallel to the flow direction. The unsteady pressures acting on a vibrating cylinder are simulated and the work done by them for one cycle of a harmonic motion is computed. The effects of a splitter plate on the flow around the cylinder as well as on the aerodynamic stability of the ovalling vibrations are also discussed. The consideration on the mechanism of ovalling vibrations is verified by the results of a free-vibration test.

Numerical Study on Laminar Flow over Three Side-by-Side Cylinders

  • Kang, Sangmo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1869-1879
    • /
    • 2004
  • The present study has numerically investigated two-dimensional flow over three circular cylinders in an equidistant side-by-side arrangement at a low Reynolds number. For the study, numerical simulations are performed, using the immersed boundary method, in the range of g* < 5 at Re= 100, where g* is the spacing between two adjacent cylinder surfaces divided by the cylinder diameter. Results show that the flow characteristics significantly depend on the gap spacing and a total of five kinds of wake patterns are observed over the range: modulation-synchronized (g* (equation omitted) 2), inphase-synchronized (g* (equation omitted) 1.5) , flip-flopping (0.3 < g* (equation omitted) 1.2) , deflected (g* (equation omitted) 0.3), and single bluff-body patterns (g* < 0.3). Moreover, the parallel and symmetric modes are also observed depending on g* in the regime of the flip-flopping pattern. The corresponding flow fields and statistics are presented to verify the observations.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.