• Title/Summary/Keyword: circular shift

Search Result 67, Processing Time 0.023 seconds

An Algorithm to Obtain Location Information of Objects with Concentric Noise Patterns (동심원 잡음패턴을 가진 물체의 위치정보획득 알고리즘)

  • 심영석;문영식;박성한
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1393-1404
    • /
    • 1995
  • For the factory automation(FA) of production or assembly lines, computer vision techniques have been widely used for the recognition and position-control of objects. In this application, it is very important to analyze characteristic features of each object and to find an efficient matching algorithm using the selected features. If the object has regular or homogeneous patterns, the problem is relatively simple. However, If the object is shifted or rotated, and if the depth of the input visual system is not fixed, the problem becomes very complicated. Also, in order to understand and recognize objects with concentric noise patterns, it is more effective to use feature-information represented in polar coordinates than in cartesian coordinates. In this paper, an algorithm for the recognition of objects with concentric circular noise-patterns is proposed. And position-conrtol information is calculated with the matching result. First, a filtering algorithm for eliminating concentric noise patterns is proposed to obtain concentric-feature patterns. Then a shift, rotation and scale invariant alogrithm is proposed for the recognition and position-control of objects uusing invariant feature information. Experimental results indicate the effectiveness of the proposed alogrithm.

  • PDF

Localization of Human Motion Using a 8×8 Phased Array Antenna (8×8 위상배열안테나를 이용한 위치추적 시스템)

  • Goh, Hoseok;Han, Heeje;Park, Soonwoo;Kim, Chan-woo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1197-1201
    • /
    • 2018
  • In this paper, a Doppler radar for a localization of a human motion is demonstrated. In the system, we used a $8{\times}8$ phased array antenna using metamaterial phase shifters for easy and precise control of antenna beam pattern. Scanning area is a circular sector with an inscribed angle of $60^{\circ}$ and a diameter of 45m. This area is divided with 15 designated area and each area is scanned for 0.2 second. When there is a motion in a designated area, we are able to detect a frequency shift due to a Doppler effect. In this way it is possible to detect the location of motion. The experiment shows that 78% of position accuracy. The remaining 22% occurred the surroundings of the designated area.

An Experimental Study of the Turbulent Swirling Flow and Heat Transfer Downstream of an Abrupt Expansion in a Circulat Pipe with Uniform Heat Flux (급확대관내에서 류유선회유동의 열전달에 관한 연구)

  • 권기린;허종철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.138-152
    • /
    • 1996
  • Many studies of heat transfer on the swirling flow or unswirled flow in a abrupt pipe expansion are widely carried out. The mechanism is not fully found evidently due to the instabilities of flow in a sudden change of the shape and appearance of turbulent shear layers in a recirculation region and secondary vortex near the corner. The purpose of this study is to obtain data through an experimental study of the swirling flow and heat transfer downstream of an abrupt expansion in a circular pipe with uniform heat flux. Experiments were carried out for the turbulent flow nd heat transfer downstream of an abrupt circular pipe expansion. The uniform heat flux condition was imposed to the downstream of the abrupt expansion by using an electrically heated pipe. Experimental data are presented for local heat transfer rates and local axial velocities in the tube downstream of an abrupt 3:1 & 2:1 expansion. Air was used as the working fluid in the upstream tube, the Reynolds number was varied from 60, 00 to 120, 000 and the swirl number range (based on the swirl chamber geometry, i.e. L/d ratio) in which the experiments were conducted were L/d=0, 8 and 16. Axial velocity increased rapidly at r/R=0.35 in the abrupt concentric expansion turbulent flow through the test tube in unswirled flow. It showed that with increasing axial distance the highest axial velocities move toward the tube wall in the case of the swirling flow abrupt expansion. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk temperatures ranging from 24.deg. C to 71.deg. C. In swirling flow, the wall temperature showed a greater increase at L/d=16 than any other L/d. The bulk temperature showed a minimum value at the pipe inlet, it also exhibited a linear increase with axial distance along the pipe. As swirl intensity increased, the location of peak Nu numbers was observed to shift from 4 to 1 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 2.2 to 8.8 times larger than fully developed tube flow values.

  • PDF

A Study of Mode Choice Analysis of Blind Spot Areas for Public Transportation in Four Metropolitan Cities (대도시권 대중교통 사각지대 통행자들의 수단선택 모형 개발 - 급행버스 노선 도입에 따른 선호의식 조사를 중심으로 -)

  • Kim, Hwang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.565-569
    • /
    • 2012
  • This study selected blind spot areas for public transportation in four metropolitan cities including Busan, Daegue, Gwangju, and Daejeon. Then this study developed a nested logit model and analyzed the changes of mode choice behaviors after adopting rapid transit system using stated preference(SP) survey. As the study results, blind spot areas have more potential public transportation demand and tendency to shift to public transportation from autos than built-up areas. This study results can be utilized to evaluate demand changes for new rapid transit system in a circular expressway and an arterial highway connecting CBD and surrounding areas. The study results also can be utilized to analyze the potential public transportation demand in the surrounding areas.

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Research of High Efficiency Integrated Reforming System Using Separated Reforming System (분리형 개질기를 이용한 고효율 일체형 개질기 개발에 관한 연구)

  • PARK, SANG-HYOUN;KIM, CHUL-MIN;SON, SUNG-HYO;JANG, SE-JIN;KIM, JAE-DONG;BANG, WAN-KEUN;LEE, SANG-YONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • A high efficiency integrated reforming system for improving the efficiency of the 5 kW PEMFC system used as the back up power of building was studied. The separated reforming system consisted of three parts - A steam reformer with two stage concentric circular shape, a heat exchanger type steam generator and a CO shift reactor. Temperature and steam carbon ratio (SCR) were control variables during operation. The operating conditions were optimized based on the thermal efficiency of the steam reformer as reformate gas composition changes at different temperature. In experiments, water was fully vaporized in the steam generator up to SCR 3.5 and the maximum thermal efficiency was achieved at the operating temperature around $700^{\circ}C$ in the steam reforming reactor. With the results of the separated reforming system research, we improved the shape of high efficiency integrated reformer. The performance evaluation of the integrated reformer was based on optimized operating conditions in SCR 3.5. As a result, the developed integrated reforming system maintained an efficiency of 76% and constant performance over 3,000 hours.

Subsurface Antenna for Remote Management of Underground Facility (지하 매설물 원격 관리를 위한 지표면 매입형 안테나)

  • Park, Dong-Kook;Cho, Ik-Hyun;Seo, Hong-Eun;Yun, Na-Ra;Hong, Che-Sup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1150-1156
    • /
    • 2007
  • In this paper, two novel subsurface antennas for remote management of underground facilities using PCS and cellular wireless network are proposed. The proposed subsurface antenna is a dual band circular patch which is inserted and molded for the protection of the antenna into a metal such as a manhole cover. The antenna is designed considering the resonant frequency shift of the antenna due to the insertion and molding. The measured return loss and receiving power of the fabricated antenna comparison with a dipole shows that two proposed subsurface antenna can be used for remote management of underground facilities using PCS and cellular systems.

A Novel Implementation of Rotation Detection Algorithm using a Polar Representation of Extreme Contour Point based on Sobel Edge

  • Han, Dong-Seok;Kim, Hi-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.800-807
    • /
    • 2016
  • We propose a fast algorithm using Extreme Contour Point (ECP) to detect the angle of rotated images, is implemented by rotation feature of one covered frame image that can be applied to correct the rotated images like in image processing for real time applications, while CORDIC is inefficient to calculate various points like high definition image since it is only possible to detect rotated angle between one point and the other point. The two advantages of this algorithm, namely compatibility to images in preprocessing by using Sobel edge process for pattern recognition. While the other one is its simplicity for rotated angle detection with cyclic shift of two $1{\times}n$ matrix set without complexity in calculation compared with CORDIC algorithm. In ECP, the edge features of the sample image of gray scale were determined using the Sobel Edge Process. Then, it was subjected to binary code conversion of 0 or 1 with circular boundary to constitute the rotation in invariant conditions. The results were extracted to extreme points of the binary image. Its components expressed not just only the features of angle ${\theta}$ but also the square of radius $r^2$ from the origin of the image. The detected angle of this algorithm is limited only to an angle below 10 degrees but it is appropriate for real time application because it can process a 200 degree with an assumption 20 frames per second. ECP algorithm has an O ($n^2$) in Big O notation that improves the execution time about 7 times the performance if CORDIC algorithm is used.

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF