• 제목/요약/키워드: circular section beam

검색결과 84건 처리시간 0.023초

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.

이형단면 코일 스프링의 응력해석 (Stress Analysis of a Coil Spring with Nonlinear Section)

  • 이인혁;한동철
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1831-1838
    • /
    • 1991
  • 본 연구에서는 와핑과 두 단면중심의 불일치에 의해 발생하는 기하중심의 이 동을 고려한 등매개변수보요소를 개발하여 스프링단면의 응력해석을 수행하고 그 결과 를 다음과 같이 검증할 것이다.우선 본 연구에 사용된 보요소가 이 두 효과를 효과 적으로 표현하고 있는지를 확인하기 위해서 간단한 비틀림실험과 비교할 것이다. 또 한 2차원문제에 대해서 입체요소를 이용한 결과와 비교하고, 원통형 스프링모델의 해 석결과를 Nagaya의 해석결과와 비교함으로써 실제 스프링해석에 효과적으로 적용될 수 있음을 보일 것이다.

Inelastic response of wide flange steel beams curved by symmetrical weak axis bending using two-point loads

  • Gergess, Antoine N.;Sen, Rajan
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.951-965
    • /
    • 2014
  • Point bending is commonly used for cambering and curving steel girders to large radii. In this system, a hydraulic ram or press is used to apply concentrated loads at selected points to obtain the required vertical (cambering) or horizontal (curving) curved profile from induced permanent deformations. This paper derives closed form solutions that relate loads to permanent deformations for horizontally curving wide flange steel beams based on their post-yield response. These solutions are presented in a parametric form to identify the relationship between key variables and their impact on the accuracy of the curving operation. It is shown that point bending could yield parabolic curved profiles that are within 1% of a desired circular curve if the span length to radius of curvature ratio (L / R) is less than 1.5 and the point loads are spaced at one third the beam length. Safe limits are then established on loads, strains and curvatures to avoid damaging the steel section. This leads to optimization of the point bending operation for inducing a circular profile in wide flange steel beams of any size.

Elastic solution of a curved beam made of functionally graded materials with different cross sections

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.659-672
    • /
    • 2015
  • This research deals with the analytical solution of a curved beam with different shapes made of functionally graded materials (FGM's). It was assumed that modulus of elasticity is graded along the thickness direction of curved beam based on a power function. The beam was loaded under pure bending. Using the linear theory of elasticity, the general relation for radial distribution of radial and circumferential stresses of arbitrary cross section was derived. The effect of nonhomogeneity was considered on the radial distribution of circumferential stress. This behavior can be investigated for positive and negative values of nonhomogeneity index. The novelty of this study is application of the obtained results for different combination of material properties and cross sections. Achieved results indicate that employing different nonhomogeneity index and selection of various types of cross sections (rectangular, triangular or circular) can control the distribution of radial and circumferential stresses as designer want and propose new solutions by these options. Increasing the nonhomogeneity index for positive or negative values of nonhomogeneity index and for various cross sections presents different behaviors along the thickness direction. In order to validate the present research, the results of this research can be compared with previous result for reachable cross sections and non homogeneity index.

3차원 지반재료 모델기반의 다양한 지주형상을 갖는 노측용 가드레일의 동적성능 평가 (Dynamic Performance of Guardrail System with Various Post Shapes Based on 3-D Soil Material Model)

  • 이동우;여용환;양승호;우광성
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.19-28
    • /
    • 2014
  • PURPOSES : This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel W-Beam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS : It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.

Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.409-424
    • /
    • 2012
  • Since relatively low elasticity modulus of the FRP materials results in lower natural frequencies, it is necessary to study the free vibration of FRP transmission poles. In this paper, the free vibration of tapered FRP transmission poles with thin-walled circular cross-section is investigated by a tapered beam element. To model the flexible joints of the modular poles, a rotational spring model is used. Modal analysis is performed for typical FRP poles with/without joint and they are also modeled by ANSYS commercial finite element software. There is a good correlation between the results of the tapered beam finite element model and those obtained from ANSYS as well as the existing experimental results. The effects of different geometries, material lay-ups, concentrated masses at the pole tip, and joint flexibilities are evaluated. Moreover, it is concluded that using tougher fibres at the inner and outer layers of the cross-section, results in higher natural frequencies, significantly.

Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능 (Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam)

  • 조현국;최창식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.112-118
    • /
    • 2015
  • 최근 도심지에 건설되는 건축물의 초고층화는 기둥에 작용하는 하중을 증가시켜 기둥단면 증가와 사용면적 확보의 어려움을 발생시키고 있다. 이에 최근에는 CFT와 같은 합성기둥의 사용이 증가하고 있는 추세이다. 그러나 CFT 기둥의 경우 폐단면으로 이루어져 있어 보-기둥 접합부 개발의 어려움과 성능저하의 문제가 발생하게 된다. 특히, 원형CFT 기둥과 외다이아프램을 이용한 접합상세 개발의 연구가 미비한 실정이다. 이에 본 연구에서는 Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부 접합상세를 개발하여 Y형 플레이트를 적용한 접합부 구조성능에 영향을 미치는 Y형 플레이트 폭 및 두께를 주요변수로 설정하여 실험을 통해 구조성능을 평가하였다. 또한 실험체에 사용된 Y형 플레이트는 설계기준에 제시된 장기허용인장력이 Y형 플레이트에 접합된 인장 측 플랜지의 축방향력 이하가 되도록 설계하여 파괴형태를 통해 Y형 플레이트의 구조적 안전성과 성능을 확인하고자 한다.

아치의 곡률면외 자유진동 해석과 P-M상관도 (The Effect of Initial Combined Load on the Lateral Free Vibration on the Aarch and P-M Interaction Curve)

  • 전교영;김성남;김종헌;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.495-500
    • /
    • 2003
  • The effect of initial combined load on the lateral free vibration of arches is investigated. For the analysis, P-M interaction curves for the arches are obtained. The arches are circular arches which have constant cross-section and simply supported. Also, the arches are subjected both radial uniform distributed load which results in an axial compression on the cross-section and end moments that cause uniform bending action at the same time. All analysis are performed by finite element method based on Kang and Yoo's curved beam theory.

  • PDF

방연(方椽)이 표현된 승탑의 용례와 특징에 관한 연구 (A Study on the Use and Features of Bangyeon on the Seungtap)

  • 조현정;김왕직
    • 건축역사연구
    • /
    • 제26권2호
    • /
    • pp.7-14
    • /
    • 2017
  • Rafter is a member for roof and plays a role in protecting shaft members under rafter such as pillar, beam and girder from natural environment and to fix by supporting finished materials of roof. It is common in the Korean architecture that rafter cross-section is paired with circular form and Buyeon cross-section is paired with the square shape. However, while there are not many, some architectures have rafter end header in the square shape. The aim of this study is to examine the square shape cases of rafter end header with special reference to stone structure. As a result, among stone structure related to Bangyeon, the majority case is seen at Palgakwondang type Seungtap. It was shown in the Seungtap of monk of Gusanseonmun school in the later Unified Silla to the early Goryeo period that succeeded Seodang Jijang.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.