• 제목/요약/키워드: circular reinforced concrete column

검색결과 104건 처리시간 0.024초

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

원형 강관 삽입 중공 RC 기둥의 내부구속 효과 연구 (Confining Effect of an Internal Steel Tube in a Circular Hollow RC Column)

  • 한택희;김홍중;김영종;강영종
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.565-575
    • /
    • 2006
  • 구속된 콘크리트는 구속되지 않은 콘크리트에 비해 상당히 큰 강도를 갖는다. 따라서 콘크리트의 구속응력을 증가시키는 것은 강도의 증가를 유도할 수 있다. 하지만 중공교각의 경우, 심부구속력의 부재로 인하여 중공교각의 안쪽면에서 취성파괴가 발생하며, 이는 기둥의 강도 저하 및 연성의 저하를 초래한다. 이러한 문제를 극복하기 위하여, 강관 삽입 중공 RC(Reinforced Concrete) 기둥이 개발되었으며, 본 연구에서는 실험을 통하여 삽입 강관에 의한 내부 구속력의 효과를 검증하였다. 총 36개의 시험체를 제작하여 실험을 수행하였으며, 실험 결과를 통하여 삽입 강관의 구속력과 이로 인한 콘크리트의 강도 증가를 확인하였다.

내부보강형 CFT 기둥 기초 연결부의 거동특성에 대한 연구 (A Study on Behavioral Characteristics of Inner Reinforced CFT Column-to-Foundation Connections)

  • 김희주;함준수;정진일;황원섭
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.36-43
    • /
    • 2014
  • In this study, circular sectional concrete-filled tube(CFT) column-to-foundation connections were numerically investigated in order to improve their structural details. A inner reinforced specimen with high-tension bolts and inner deformed bars was adopted from a previous experimental study to make the numerical model. The validity of the numerical method was verified through comparing the experimental results with the analysis's ones. In order to optimize design variables about the inner reinforced model, a number of numerical analyses were conducted for various variables. Finally, this study suggested the optimum variables about the reinforced circular sectional CFT column-to-foundation connections.

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

내진설계시 경제성 및 시공성을 고려한 RC 교각의 최적설계 (Optimum Seismic Design of Reinforced Concrete Piers Considering Economy and Constructivity)

  • 조병완;김영진;윤은이
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.479-484
    • /
    • 2000
  • In this study, optimal design of reinforced concrete piers under seismic load is numerically investigated. Object function is the area of the concreate-section. Design variables are the total area of reinforcement and concrete-section dimension(Circular section diameter). Constraints of the design strength of the column, longitudinal reinforcement ratio and lower and upper bounds on the design variables are imposed. The reinforcement concrete column is analysed and designed by the Ultimated Strength Design method and load combination involving dead, live, wind and seismic load is used. For numerical optimization, ADS(Garret N, Vanderplaats_ routine is used. From the result of numerical examples, the concrete-section dimension was reduced, but longitudinal reinforcement was not changed. The results show that confinement reinforcement was reduced and confinement reinforcement spacing is increased. The higher strength of reinforcement used, the more concrete-section area was reduced.

  • PDF

중.약진 지역의 원형 내진 RC 교각의 내진성능평가 (SEismic Performance of Circular RC Bridge Piers designed in Moderate on low Seismic Zone)

  • 박종협;조창백;박희상;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.452-457
    • /
    • 2000
  • This research aims at evaluating the seismic performance of the existing R/C bridge piers, which were seismically designed in accordance with the provision of moderate confinement design code (Eurocode 8). The work presented in this paper experimentally investigates the ductility and hysteretic behavior of circular reinforced concrete columns with moderate confinement. Pseudo-dynamic tests have been carried out on two scaled R/C column specimens to investigate their hysteretic behavior and other seismic performance.

  • PDF

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets

  • Wu, Han-Liang;Wang, Yuan-Feng
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.501-516
    • /
    • 2010
  • This paper is aiming to study the performances of reinforced high-strength concrete (HSC) short columns confined with aramid fibre-reinforced polymer (AFRP) sheets. An experimental program, which involved 45 confined columns and nine unconfined columns, was carried out in this study. All the columns were circular in cross section and tested under axial compressive load. The considered parameters included the concrete strength, amount of AFRP layers, and ratio of hoop reinforcements. Based on the experimental results, a prediction model for the axial stress-strain curves of the confined columns was proposed. It was observed from the experiment that there was a great increment in the compressive strength of the columns when the amount of AFRP layers increases, similar as the ultimate strain. However, these increments were reduced as the concrete strength increasing. Comparisons with other existing prediction models present that the proposed model can provide more accurate predictions.

Shape effect on axially loaded CFDST columns

  • R, Manigandan;Kumar, Manoj
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.759-772
    • /
    • 2022
  • Concrete-filled double skinned steel tubular (CFDST) columns have been used to construct modern structures such as tall buildings and bridges as well as infrastructures as they provide better, lesser weight, and greater stiffness in structural performance than conventional reinforced concrete or steel members. Different shapes of CFDST columns may be needed to satisfy the architectural and aesthetic criteria. In the study, three-dimensional FE simulations of circular and elliptical CFDST columns under axial compression were developed and verified through the experimental test data from the perspectives of full load-displacement histories, ultimate axial strengths, and failure modes. The verified FE models were used to investigate and compare the structural performance of CFDST columns with circular and elliptical cross-section shapes by evaluating the overall load-deformation curves, interaction stress-deformation responses, and composite actions of the column. At last, the accuracy of available design models in predicting the ultimate axial strengths of CFST columns were investigated. Research results showed that circular and elliptical CFDST column behaviors were generally similar. The overall structural performance of circular CFDST columns was relatively improved compared to the elliptical CFDST column.