• Title/Summary/Keyword: circular hole

Search Result 296, Processing Time 0.029 seconds

A Study on the Improvement of phase Unwrapping in Discontinuous Fringe Pattern (Phase Map Unwrapping 향상에 관한 연구)

  • 조영학;김경석;장호섭;정승택
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.330-333
    • /
    • 2002
  • This study Presents improvement of Precision in the non-contacted laser application measuring techniques. The phase map of deformation obtained by phase shifting method in Electronic Speckle Pattern Interferometry displays the wrapped image by the arctangent function, which is a characteristic of 4-step phase shifting method. To obtain deformation distribution from the results, the wrapped phase map is processed by an unwrapping method. But a previous method cannot apply discontinuous object as like plate with a circular hole to obtain precious deformation distribution To solve this problem, new algorithm is developed and the result is compared with previous method.

  • PDF

Residual stress analysis of thick plate pipe (후판 파이프 제작시 잔류응력)

  • Choe Gwang;Im Seong U
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.150-152
    • /
    • 2004
  • This study was aimed at evaluation of residual stress of steel pipe structures. The production process of pipes was complex (at first bending was done by roll forming or press forming and welding was final process of making of steel pipes). So there could be effected high residual stresses in steel pipes. In order to evaluate the changes of residual stress the locations of measurement were selected carefully. Measurements of residual stress were done for various kinds of pipes (shapes in circular and square). For the evaluation of residual stress, hole-drilling method (ASTM E837 was applied. The results showed that along the weld Eine high tensile stress were measured as effected, and high tensile stresses were measured where large plastic deformation developed. Through these efforts, experimental results could be more effectively assisted by numerical method.

  • PDF

Finite Element Analysis of Heat and Moisture Transfer in Porous Materials (다공성 물질의 열 및 습도 전달에 관한 유한요소 해석)

  • Lee, Ho-Rim;Geum, Yeong-Tak;Song, Chang-Seop;O, Geun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.158-167
    • /
    • 1999
  • Heat and moisture transfer associated with porous materials are investigated. The heat and moisture transfer in porous materials caused by the interaction of moisture gradient, temperature gradient, conduction, and evaporation are considered. The variations of temperature and moisture not only change the volume but also induce the hygro-thermal stress. The finite element formulation for solving the temperature and moisture transfer as well as the associated hygro-thermal stresses is developed. In order to verify the finite element formulation, the heat and moisture moving boundary problem in a half space and the hygro-thermo-mechanical problem in an infinite plate with a circular hole are analyzed. Temperature profile, moisture profile, and hygro-thermal stresses are compared with those of analytic solution and other investigator. Good agreements are examined

  • PDF

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Benchmark tests of MITC triangular shell elements

  • Jun, Hyungmin;Mukai, Paul;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.17-38
    • /
    • 2018
  • In this paper, we compare and assess the performance of the standard 3- and 6-node MITC shell elements (Lee and Bathe 2004) with the recently developed MITC triangular elements (Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) which were based on the partitions of unity approximation, bubble node, or both. The convergence behavior of the shell elements are measured in well-known benchmark tests; four plane stress tests (mesh distortion test, cantilever beam, Cook's skew beam, and MacNeal beam), two plate tests (Morley's skew plate and circular plate), and six shell tests (curved beam, twisted beam, pinched cylinder, hemispherical shells with or without hole, and Scordelis-Lo roof). To precisely compare and evaluate the solution accuracy of the shell elements, different triangular mesh patterns and distorted element mesh are adopted in the benchmark problems. All shell finite elements considered pass the basic tests; namely, the isotropy, the patch, and the zero energy mode tests.

Fatigue Crack Propagation Analysis by P-version of Finite Element Method (P-Version 유한요소법에 의한 피로 균열 해석)

  • 우광성;이채규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.30-35
    • /
    • 1992
  • Since many design problems in the railroad, aerospace and machine structures involve considerations of the effect of cyclic loading, manufacturing and quality control processes must fully account for fatigue of critical components. Due to the sensitivity of the Paris law, it is very important to calculate the ΔK numerically to minimize the error of predicted fatigue life in cycles. It is shown that the p-version of FEM based on LEFM analysis is far better suited for computing the stress intensity factors than the conventional h-version. To demonstrate the proficiency of the proposed scheme, the welded T-joint with crack problem of box car body bolster assembly and a crack problem emanating Iron a circular hole in finite strip have been solved.

  • PDF

Formal Characteristics of Pi-Ling(披領) of Qing Dynasty (청대 피령의 조형적 특성)

  • Park Hyun-Jung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.7 no.1
    • /
    • pp.65-75
    • /
    • 2005
  • The purpose of this paper is to understand the formal characteristics of Pi-Ling by investigating the Pi-Ling(披領)'s system of Qing Dynasty. As a research document, Qing-Huidian-Tu(淸會典圓) has been used. The following results were found out in this research; 1) The form of Pi-Ling was horizontally wide and both sides were narrow and sharp. There was a circular hole in the center of Pi-Ling. It was worn around the neck by a button in its front center. 2) materials: The materials of Pi-Ling were the leather of marten or sea-lion, satins, and silk. 3) The color of Pi-Ling was purple or blue. 4) Moving dragons(行龍) were used on the pattern of Pi-Ling. And the Pi-Ling of low level officials had no patterns.

  • PDF

Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method (보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구)

  • Choi S. W.;Chang K. S.;Kim I. S.
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.9-19
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using the two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'Dynamic Domain Dividing Line' which has an advantage for constructing a well-defined hole-cutting boundary. A conservative Chimera grid method with the dynamic domain-dividing line technique is applied and validated by solving the flowfield around a circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver are also examined by computations of an oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

A Sink Flow from a Rotating Tank (회전원통으로부터의 싱크 유동)

  • Suh Yong Kweon;Yeo Chang Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.36-39
    • /
    • 2004
  • In this study, we present the theoretical, numerical and experimental results of the sink flow from a rotating, circular tank Strikingly enough, when the upper free surface was set with no-slip boundary conditions, the Ekman boundary-layer develops not only above the bottom surface but under the free surface. The sink fluid is coming from the two Ekman layers, and the mass transfer from the bulk, inviscid region is dependent on the rotational speed. It is also remarkable to see that all the fluid gathered along the axis flows through a rapidly rotating fluid column with almost the same size as the hole.

  • PDF

Micro Electrochemical Machining of Stainless Steel Using Citric Acid (구연산을 이용한 스테인레스 스틸의 미세 전해가공)

  • Ryu, Shi-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.