• Title/Summary/Keyword: circular function

Search Result 510, Processing Time 0.029 seconds

Production of pediocin by Chemical Synthesis and Bactericidal Mode of Action

  • Koo, Min-Seon;Kim, Wang-June;Kwon, Dea-Young;Min, Kyung-Hee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.149-153
    • /
    • 2001
  • To investigate the mode of bactericidal action for antimicrobial peptide, pediocin, synthetic and mutant pediocins were prepared by direct chemical synthesis. Native pediocin was purified from Pedio-coccus acidilactici M and its conformational structure and bactericidal functions were analyzed and compared to synthetic pediocin. Schematic mode of pediocin actions, how pediocin binds on the target cell membrane, penetrates and makes tunnel are proposed. For these purposes, primary and secondary structures of pediocin was analyzed and disulfide bond assignment was also done. The pediocin purified from P. acidilactici M had high effective bactericidal ability against gram positive bacteria, especially Listeria monocytogenes and was very stable at extreme pHs and even at high temperatures such as autoclaving temperature (121$^{\circ}C$). Pediocin was consisted of 44 amino acids with four cysteines. Novel synthetic peptides were achieved by solid phase peptide synthesis(SPPS) method. To explain the function of cysteine in C-terminal region, mutant pediocin, Ped[C24A+C44A], was synthesized and their structural and biological functions were analyzed. Second mutant pediocin, Ped[KllE], was prepared to explain the function of lysine at 11 of N-terminal part of pediocin, especially loop of $\beta$-sheet, and to predict the initial binding site of pediocin. The native and synthetic pediocins was showed random coil conformation by spectropolarimetry in moderate conditions. This conformation was observed in extreme conditions such as high temperature and low and high pHs, also. Circular dichroism(CD) data also showed the existence of $\beta$-turn structure in N-terminal part both native and synthetic pediocins. A structural model for pediocin predicts that 18 amino acids in the N-terminal part of the peptide assume a three-strand $\beta$-sheet conformation. This random coil in C-terminal part of pediocin was converted to folding structure, helix structure, in nonpolar solvents such as alcohol and TFE. The disulfide bond between $^{9}$ Cys and $^{14}$ Cys was concrete and inevitable, however, evidences of disulfide bond between $^{24}$ Cys and $^{44}$ Cys was not. Data of Ped[C24A+C44A], pediocin mutant showed that $^{44}$ Cys was required during killing the target cells but not inevitable, since Ped[C24A+C44A] still have bactericidal activity but much less than native pediocin. Another pediocin mutant, Ped[KllE], had still bactericidal activity, was controversial to propose that positive charge like as $^{11}$ Lys in loop or hinge in bacteriocin bound or helped to binding to microorganism with electrostatic interaction between cell membrane especially teichoic acid and positive amino acid nonspecifically. The conformation of pediocin among native, synthetic and mutant pediocins did not show big difference. The conformations between oxidized and reduced pediocin were almost similar regardless of native or synthetic.

  • PDF

A Study on a Moving Adaptive Grid Generation Method Using a Level-set Scheme (레벨셋법을 이용한 이동 집중격자 생성법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.18-27
    • /
    • 2002
  • In order to improve the accuracy of the solution near the boundary in an analysis of viscous flow around an arbitrary boundary which move and be deformed using an Eulerian concept, a level-set based grid deformation method is introduced to concentrate grid points near the boundary. This paper presents a new monitor function which can easily control the level of the concentration of grid points along the boundary. Computations for steady flow around a semi-circular cylinder mounted on the bottom of the flow domain were carried out to check the improvement of the solution using the adaptive grid system with an immersed boundary method. The present numerical results show a good agreement with the solutions obtained by a body fitted grid system and more accurate solutions than those computed with non-adaptive grid system. For the validation of mechanical usefulness of the present method, an expanded analysis of flow around multi-body fixed in the flow domain was carried out. Finally, the present moving adaptive grid method was applied to a two-dimensional bubble rise problem. The computed results show well adapted grid points around the boundary of the bubble at every time and a good agreement with the result calculated by fixed grid system.

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

Bearing Capacity Characteristics of Shallow Foundation by Three Dimension FEM (3차원 유한요소해석에 의한 얕은 기초의 지지력 특성)

  • Park, Choon-Sik;Kim, Jong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to understand the characteristics of bearing capacity of shallow foundation on the grounds. We made a comparative study of existing bearing capacity theory, based on the three-dimensional finite element analysis with a variety of conditions such as ground condition, foundation scale and foundation shape. In the finite element analysis, the ultimate bearing capacity showed a gradual convergence in the form of exponential function or logarithm function according to the foundation scale. Although the shear strength increased, the bearing capacity tended not to increase but change linearly. In the results of comparative study of existing bearing capacity theory, bearing capacity ratio ($q_{u(FEA)}/q_{u(theory)}$) of pure sand has the outcome closest to those of the Terzaghi method. Pure clay turned out to be about 0.4~0.6 while normal soil was changed in a range of 0.3~1.3. As shear strength is increased, the results turned out to be less than 1.0. Bearing capacity ratio ($q_u/q_{u(1.0)}$), normalized at 1.0m bearing capacity, was about 35%, 15% and 5% of theoretical formula under the condition of ${\phi}=25^{\circ}$, $30^{\circ}$ and $35^{\circ}$ of pure sand; no scale effect was found with pure clay and the normal soil with lower soil strength level showed less than 10% of the theoretical formula of pure sand. Bearing capacity ratio of each case, in accordance with, the shear strength increase, was largely influenced by the internal friction angle. Shape factor of bearing capacity ratios classified by foundation shapes have different results according to the shapes; the shape factor of circular foundation is 1.50, square foundation is 1.30, rectangular and continuous foundations are 1.1~1.0.

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness (Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구)

  • Kim, D.H.;Lee, Eunsook;Kim, Hyun Woo;Seong, Seungho;Kang, J.-S.;Yang, Seung-Mo;Park, Hae-Soo;Hong, JinPyo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.124-128
    • /
    • 2016
  • We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

Brittle rock property and damage index assessment for predicting brittle failure in underground opening (지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가)

  • Lee, Kang-Hyun;Bang, Joon-Ho;Kim, Jin-Ha;Kim, Sang-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.327-351
    • /
    • 2009
  • Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.

Structure and function of the secretory ducts in Panax ginseng C.A. Mayer (인삼 분비관의 구조와 기능)

  • Kim, Woo-Kap;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.10 no.1_2
    • /
    • pp.77-86
    • /
    • 1980
  • The distribution of the secretory ducts, fine structures of the secretory epithelial cells, and the ingredients of the metaplasmic inclusions were studied at light and electron microscopical levels in seeds, stems, leaves, and roots of ginseng. The secretory ducts occurred in the hypocotyl of the embryo, in the cortex of the roots, and also both inside and outside of each vascular bundle in the stems and leaves. Especially, it is considered that the circular layers of the secretory ducts in roots may represent their ages. The epithelial cell has well developed nucleolus, mitochondria and smooth endoplasmic reticulum. Sudanophyl and osmiophilic inclusions were found in the epithelial cytoplasm and duct lumen. But these inclusions were not observed when extracted with pyridin or alcohol. In contrast to the lumen with red color, the epithelial cells were blue in color as stained with nile blue, suggesting that the former inclusions are neutral lipid while the latter are acidic lipid. The electron density of the cell inclusions was quite high as fixed with osmium tetroxide, indicating that most of these secretory materials seem to be unsaturated lipid. Therefore, since ginseng secretory ducts are closely associated with the lipid metabolism, it should be called lipid canal or lipid duct.

  • PDF

Comparative Study on the Applicability of Point Estimate Methods in Combination with Numerical Analysis for the Probabilistic Reliability Assessment of Underground Structures (수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성에 관한 비교 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • Point estimate method has a less accuracy than Monte Carlo simulation that is usually considered as an exact probabilistic method, but this method still remains popular in probability-based reliability assessment in geotechnical and rock engineering, because it significantly reduce the number of sampling points and produces the statistical moments of a performance function in a reasonable accuracy. In the present study, we investigated the accuracy and applicability of point estimate methods proposed by Rosenblueth and Zhou & Nowak by comparing the results of these two methods with those of Monte Carlo simulations. The comparison was carried out for the problem of a lined circular tunnel in an elastic medium where an closed-form analytical solution is given. The comparison results showed that despite the non-linearity of the analytical solution, the statistical moments calculated by the point estimate methods and the Monte Carlo simulations agreed well with an average error of roughly 1-2%. This average error demonstrates the applicability of the two point estimate methods for the probabilistic reliability assessment of underground structures in combination with numerical analysis.

A Study on the Analysis of the Error in Photometric Stereo Method Caused by the General-purpose Lighting Environment (測光立體視法에서 범용조명원에 기인한 오차 해석에 관한 연구)

  • Kim, Tae-Eun;Chang, Tae-Gyu;Choi, Jong-Soo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.53-62
    • /
    • 1994
  • This paper presents a new approach of analyzing errors resulting from nonideal general-purpose lighting environment when the Photometric Stereo Method (PSM) is applied to estimate the surface-orientation of a three-dimensional object. The approach introduces the explicit modeling of the lighting environment including a circular-disk type irradiance object plane and the direct simulation of the error distribution with the model. The light source is modeled as a point source that has a certain amount of beam angle, and the luminance distribution on the irradiance plane is modeled as a Gaussian function with different deviation values. A simulation algorithm is devised to estimate the light source orientation computing the average luminance intensities obtained from the irradiance object planes positioned in three different orientations. The effect of the nonideal lighting model is directly reflected in such simulation, because of the analogy between the PSM and the proposed algorithm. With an instrumental tool designed to provide arbitrary orientations of the object plane at the origin of the coordinate system, experiment can be performed in a systematic way for the error analysis and compensation. Simulations are performed to find out the error distribution by widely varying the light model and the orientation set of the object plane. The simulation results are compared with those of the experiment performed in the same way as the simulation. It is confirmed from the experiment that a fair amount of errors is due to the erroneous effect of the general-purpose lighting environment.

  • PDF