• Title/Summary/Keyword: circular frequency

Search Result 787, Processing Time 0.025 seconds

Design of Circular Patch Antenna for 1.6G Hz band Satellite Navigation System (1.6 GHz대역 위성항법 시스템용 원형 패치 안테나 설계)

  • Kang, NyoungHak;Rhee, Seung-Yeop;Yeo, Junho;Lee, Jong-Ig;Kim, GunKyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.63-64
    • /
    • 2018
  • In this study, a design method for a circular polarization patch antenna operating at a frequency 1.5 GHz~1.7 GHz was studied. To obtain the wide bandwidth and high gain, air substrate between patch and ground plane was applied. The impedance bandwidth is improved by adjusting the sizes of patch, the distance between main patch and ground plate, the length of internal slots, the position of feeding point, the length of external stub, etc. The antenna is designed and simulated for an operation in the frequency range of 1.5GHz~1.7GHz band. The results show that antenna characteristics such as return loss, gain, axial ratio, radiation patterns are appropriate for the satellite navigation system.

  • PDF

Design and Implementation of Single-Feed Dual-Band Circular Polarization Square Patch Antenna for GPS and DMB (GPS/DMB 수신용 단일 급전 이중 대역 원형 편파 사각 패치 안테나 설계 및 구현)

  • Yoon, Ki-Suk;Kim, Hyuck-Jin;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.138-144
    • /
    • 2008
  • In this paper, we propose a novel single-feed dual-band circular polarization square patch antenna for GPS(global positioning system)/DMB(digital multimedia broadcasting) receiver. The proposed antenna has folded slots at the 4 corners and a diagonal slot at the center of the square patch. The measured -10 dB impedance bandwidths of the proposed antenna were 84 MHz ranging from 1.516 GHz to 1.600 GHz for the low frequency band(GPS) and 109 MHz ranging from 2.596 GHz to 2.705 GHz for the high frequency band(DMB). The measured peak linear antenna gains of the proposed antenna were 6.23 dBi at 1.575 GHz for GPS and 6.97 dBi at 2.642 GHz for DMB band.

Control of vortex shedding from circular cylinder by acoustic excitation (원통내부의 음향여기에 의한 와류유출제어)

  • Kim, Gyeong-Cheon;Bu, Jeong-Suk;Lee, Sang-Uk;Gu, Myeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1649-1660
    • /
    • 1996
  • The flow around a circular cylinder was controlled by an acoustic excitation issued from a thin slit along the cylinder axis. The static pressure distributions around the cylinder wall and flow characteristics in the near wake have been measured. Experiments were performed under three cases of Reynolds number, 7.8 * 10$\^$4/, 2.3 * 10$\^$5/ and 3.8 * 10$\^$5/. The effects of excitation frequency, sound pressure level and the location of the slit were examined. Data indicate that the excitation frequency and the slit location are the key parameters for controlling the separated flow. At Re$\_$d/, = 7.8 * 10$\^$4/, the drag is reduced and the lift is generated to upward direction, however, at Re$\_$d/, =2.3 * 10$\^$5/ and 3.8 * 10$\_$5/, the drag is increased and lift is generated to downward direction inversely. It is thought that the lift switching phenomenon is due to the different separation point of upper surface and lower surface on circular cylinder with respect to the flow regime which depends on the Reynolds number. Vortex shedding frequencies are different at upper side and lower side. Time-averaged velocity field shows that mean velocity vector and the points of maximum intensities are inclined to downward direction at Re$\_$d/ = 7.8 * 10$\^$4/, but are inclined to upward direction at Re$\_$d/ = 2.3 * 10$\^$5/.

Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate (감쇠판에 의한 원기둥의 상하운동 저감 모형시험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

Unsteady Wall Interference Effect on Flows around a Circular Cylinder in Closed Test-Section Wind Tunnels (폐쇄형 풍동 시험부내의 원형 실린더 유동에 대한 비정상 벽면효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.1-8
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a circular cylinder in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results showed that the unsteady pressure gradient over the cylinder is enhanced by the wall interference, and as a result the fluctuations of lift and drag are augmented. The drag is further increased because of the lower base pressure. The vortex shedding frequency is also increased by the wall interference. The pressure on the test section wall shows the harmonics having the shedding frequency contained in the wall effect.

Design of Broadband Spiral Antenna for a Portable Non-Linear Junction Detector System (휴대형 NLJD용 광대역 스파이럴 안테나의 설계)

  • Kim, Jeong-Won;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • This paper proposes the design of broadband spiral antenna for a potable non-linear junction detector (NLJD) system. To realize the broadband antenna design, it was considered optimization of the number of spiral turns by iteration calculation. Ground plane with the Archimedean spiral slit to keep the same current distribution between radiating plane and ground is considered for circular polarization design. In order to realize high directivity and high gain of the proposed antenna, the cavity wall and the metal cap which is located on back of ground plane were also considered in design. Measurement results of return loss were agreed well with VSWR 2:1 at interested frequency band among 2.4 to 2.44 GHz, 4.84 to 4.92 GHz and 7.28 to 7.36 GHz. Measured axial ratio was observed 3 dB below and showed reasonable agreement with simulation results. Characteristics of the RHCP(Right Hand Circular Polarization) with the measured gain of 6.8 dBi above at interested frequency band were also observed.

CPW-fed Wideband Loop Antenna for Indoor Digital TV Applications (실내 디지털 TV용 CPW-급전 광대역 루프 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1492-1497
    • /
    • 2017
  • In this paper, a design method for a CPW-fed wideband loop antenna for indoor digital TV applications is studied. The proposed loop antenna consists of a square loop and two circular sectors which connect the loop with central feed points, and the CPW feed line is inserted in the lower circular sector. The CPW feed line is designed to match with the 75 ohm port impedance for DTV applications, and the ground slots are etched in order to improve the impedance matching in the middle frequency region. The effects of the gap between the circular sectors and the location and dimension of the ground slots on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized antenna is fabricated on FR4 substrate, and the experiment results show that it operates in the frequency band of 463-1,280 MHz for a VSWR < 2, which assures the operation in the DTV band.

An experimental study on characteristics of exhaust emission due to vehicle driving pattern in urban area (도심지 주행패턴에 의한 배출물특성에 관한 실험적 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-54
    • /
    • 1986
  • Driving pattern of gasoline passenger car was measured and analyzed at some areas(6urban area routes, 4 radial routes, 4 circular routes)in Seoul city. Measured items were vehicle speed, engine speed, intake manifold vacuum, and fuel consumption. Driving pattern data were reappearanced with engine dynamometer. Results of this investigation might be summarized as below; 1. When we compared urban area route with radial or circular route in rush hour, it was found that the average vehicle speed was measured to be lower about 25% and fuel consumption to be higher about 12% in urban area route. 2. Average vehicle speed was measured to be higher about 30% and driving resistance output to be higher about 25% in non-rush hour, but average fuel economy was increased a little. 3. On the bases of average fuel economy and characteristics of exhaust emissions, optimum driving vehicle speed was found about 60 km/h in the 4th(top)and about 40km/h in the 3rd in driving of experimental engine. 4. Idling frequency and exhaust emissions of CO,HC were related to idling closely. But exhaust emission of NOx, which had nothing to do with idling frequency, had relation to acceleration time ratio.

  • PDF

Heat Transfer by an Oscillating Flow in a Circular Pipe with Sinusoidal Wall Temperature Distributions (벽온도분포가 정현파인 원관에서 왕복유동에 의한 열전달 해석)

  • 이대영;박상진;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3208-3216
    • /
    • 1993
  • Heat transfer characteristics of the laminar oscillating flow in a circular pipe have been studied under the condition that the wall temperature of the pipe is distributed sinusoidally with the axial direction. The axial velocity was assumed to be uniform in radial direction and the temperature field was analyzed by means of the perturbation method. The results show that the difference between wall and section-time-averaged fluid temperature increases as the oscillating frequency increases and eventually converges to a constant value which is determined by the ratio of swept distance to the characteristic length of wall temperature distribution. Also it is shown that the dominant variable in the heat transfer process when swept distance ratio is greater than 1 is not thermal Womersley number(F) but thermal Womersley number multiplied by the square root of swept distance ratio. The variation of the time-averaged Nusselt number is obtained as a function of F. The results indicate that Nusselt number is proportional to $F_{\epsilon}^{1/2}$ when both of F and .epsilon. are much greater than 1.

Direct Numerical Simulation of the Lock-on Phenomena in the Wake behind a Circular Cylinder in a Perturbed Flow at Re=360 (Re=360에서 교란유동장에 놓인 원형실린더 후류의 유동공진 현상에 대한 직접수치해석)

  • Park, Ji-Yong;Kim, Soo-Hyeon;Bae, Joong-Hun;Park, No-Ma;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.780-789
    • /
    • 2007
  • Lock-on phenomenon in the wake of a circular cylinder is investigated at the Reynolds number of 360 using direct numerical simulation (DNS). To induce lock-on, a streamwise velocity perturbation with a frequency of twice the natural shedding frequency is superimposed on the free stream velocity. The Reynolds stress distributions are investigated to analyze the streamwise force balance acting on the recirculation region and the results are compared with the previous experimental result. When the lock-on occurs, the pressure force on the recirculation region is shown to increase mainly due to the reversal of the Reynolds shear stress distribution, which is consistent with our previous results using PIV measurement. It is also shown that, with the lock-on, the strength of the primary vortices increases whereas that of the secondary vortices decreases significantly. Further, under the lock-on condition the wavelength of the secondary vortices increases by as much as 2.5 times.