• Title/Summary/Keyword: circular distribution

Search Result 645, Processing Time 0.02 seconds

Effect of Steel Fiber Distribution in Steel Fiber-reinforced Concrete on Surface Electrical Resistivity (강섬유 보강콘크리트의 강섬유 분산이 표면전기저항에 미치는 영향)

  • Kim, Seong Do;Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.106-113
    • /
    • 2013
  • One of feasible non-destructivity test methods for evaluation of concrete permeability is the measurement of surface resistivity. But the application to steel fiber-reinforced concrete has been limited because mis-evaluation could be caused by the steel fibers in concrete. In this study, the effect of fiber distribution on surface electrical resistivity of steel fiber-reinforced concrete was investigated through experimental program. Resistivity was measured three times on four surfaces in three rectangular and circular specimens with 0.5%, 1% and 1.5% steel fibers by volume and compared each other. The results obtained from circular specimens were consistent compared to those from rectangular specimens. And the results demonstrated that the effect of fiber distribution on surface resistivity was not significant compared to that of mixing ratio of steel fibers. In conclusion, this non-destructive testing method using measurement of surface resistivity could be used for SFRC within 0.5% steel fibers by volume.

A study on the Array of Circular Loop Antenna in Moving Media (차동기질내에서 위형 루우프 안테나의 배열에 관한 연구)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.6
    • /
    • pp.33-37
    • /
    • 1974
  • In this paper, the radiation characteristics for the array of a circular loop antenna is studied in moving media. The medium is assumed to be homogeneous, isotropic, and to move with a constant velocity much less than the speed of light. The integral equation for the current distribution is derived and the current functions is found by means of courier Series as a solution of the integral equation. The electric field is derived from the current on circular loop antenna and the Dyadic Green's Function in moving media. The numerical calculation of the electric field concerning to the two element antenna array,, in which one element is parasitic, is carried out. The field patterns are plotted from the computed values. As a result, the field patterns in moving media, compared with the patterns in stationary media, are found to decrease in the direction of media velocity and increase in the opposite direction, and the maximum directivity is shifted.

  • PDF

Characteristics and Errors of Four Acoustic Holographies (네 가지 음향 홀로그래피의 특성 및 오차)

  • 김시문;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.950-967
    • /
    • 1995
  • Acoustic holography makes it possible to reconstruct the acoustic field based on the measurement of the pressure distribution on the hologram surface. Because of the merit that one can obtain an entire three-dimensional wave field from the data recorded on a two-dimensional surface, the holographic method has been widely studied. Being an experimental method, holography has an unavoidable error which is generate by sampling in space and frequency domain and finite aperture size. Its magnitude is dependent on the space and frequency domain and finite aperture size. Its magnitude is dependent on the shape of hologram surface, acoustic holography may be classified into four types of holography : rectangular type planeholography, circular type plane holography, cylindrical holography and spherical holography. In this paper, four types of holography are studied by modal summation method. Numerical simulation is performed using a monopole source with varying parameters to find out effects to the estimation error in each holography. Experiments of circular type plane holography and cylindrical holography explain strong relation between the shape of hologram surface and the acoustic field.

Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor (케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향)

  • 김동원;김윤제
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

Effects of stenotic severity on the flow structure in a circular channel under a pulsatile flow

  • Kim, Kyung-Won;Cheema, Taqi-Ahmad;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.140-146
    • /
    • 2014
  • Stenosis is the drastic reduction in the cross-sectional area of blood vessel caused by accumulations of cholesterol. It affects the blood flow property and structure from the fluid dynamic point of view. To understand the flow phenomenon more clearly, a particle image velocimetry method is used and the fluid dynamic characteristics in a circular channel containing stenosis structure is investigated experimentally in this study. Different stenotic-structured models made of acrylic material are subjected to a pulsatile flow generated by an in-house designed pulsatile pump. The inner diameter of the tube inlet is 20 mm and the length of reduced area for stenosis ranges between 35mm and 40mm. It is circulated continuously through a circular channel by the pump system. Pressure is measured at four different sections during systolic and diastolic phase changes. The phase-averaged velocity field distribution shows a recirculation regime after the stenotic structure. The effects of the stenotic obstructions are found to be more severe when the aspect ratio is varied.

Characteristics of Turbulent Impinging and Wall Jet Flow for a Circular Nozzle with Various Exit Wall Thickness (다양한 벽면 두께를 갖는 원형 노즐에서 분사되는 난류 충돌 및 벽면 제트 유동장 특성)

  • Yang, Geun-Yeong;Yun, Sang-Heon;Son, Dong-Gi;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.751-757
    • /
    • 2001
  • An experimental study of impinging jet-flow structure has been carried out for a fully developed single circular jet impingement cooling on a flat plate, and the effect of the wall thickness at nozzle exit edge is investigated. Impinging jet flow structures have been measured by Laser-Doppler Velocimeter to interpret the heat transfer results presented previously by Yoon et al.(sup)(10) The peaks of heat transfer rate are observed near the nozzle edge owing to the radial acceleration of jet flow when the nozzle locates close to the impingement plate. The growth of the velocity fluctuations in the wall jet flow is induced by the vortices which originate in the jet shear layer, and consequently the radial distribution of local Nusselt numbers has a secondary peak at the certain radial position. As a wall of circular pipe nozzle becomes thicker for small nozzle-to-target distance, the entrainment can be inhibited, consequently, the acceleration of wall jet flow is reduced and the heat transfer rate decreases.

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.