• 제목/요약/키워드: chromatin organization

검색결과 59건 처리시간 0.033초

일반적 수정과 세포질내 정자주입법에 의해 수정에 실패한 인간난자의 미세소관과 염색체의 형태이상 (Aberrant Microtubule Assembly and Chromatin Configuration of Homan Oocytes Which Failed to Complete Fertilization Following In Vitro Fertilization and Intracytoplasmic Sperm Injection)

  • Chung, H. M.;Kim, N. H.;Kim, J. W.;J. M. Lim;Park, C.;J. J. Ko;K. Y. Cha;Kim, J. M.;K. S. Chung
    • 한국가축번식학회지
    • /
    • 제24권2호
    • /
    • pp.143-154
    • /
    • 2000
  • 본 연구는 생식보조기법을 시행한 불임환자로부터 얻은 난자를 일반적인 수정법과 세포질내 정자직접주입법으로 수정을 유도한 다음 정상수정에 실패한 난자에 대한 미세소관과 염색체의 형태학적 차이를 laser scanning confocal microscope를 이용하여 비교분석하고자 실시하였다. 일반적 수정법 혹은 세포질내 정자직접주입법 실시 후 18시간째에 해부현미경 하에서 난자를 관찰하였을 때 전핵형성에 실패한 미수정란, 한 개의 전핵 또는 3개이상의 전핵의 형성이 관찰된 이상수정란으로 구분하여 연구를 실시하였다. 미세소관의 관찰을 위해서 (-tubulin antibody를 반응시킨 후 형광물질이 부착된 2차항체와 반응시킨 후 관찰하였으며 염색체의 관찰을 위해서는 propidium iodide로 염색한 다음 confocal microscope 하에서 관찰하였다. 연구결과 대부분의 난자는 수정과정중에 있었으나 일부의 난자에서는 특정단계에서 정지되어 있는 것이 관찰되었다. 즉, 감수분열 중기에서 정자의 침입이 이루어지지 않은 경우, 정자의 침입은 이루어졌으나 sperm aster 형성이 불완전한 경우, 웅성 및 자성전핵의 형성에 실패한 경우 및 전핵의 위치가 불완전한 경우 등이 관찰되었고 이들 난자의 경우 높은 비율로 미세소관과 염색체의 이상이 관찰되었다. 이상의 연구결과로 미루어 볼 때 생식보조기법의 시술과정에서 채취되는 난자의 수정실패의 원인은 세포골격기관 특히 미세소관의 이상과 염색체의 이상에 기인되는 것으로 사료되면 이러한 세포골격 구성물질의 이상에 대해서는 추후에 세포조직학적 또는 분자생물학적 분석이 필요하다고 하겠다.

  • PDF

유사분열 활성화 단백질 효소가 돼지난자의 체외성숙에 미치는 영향 (MAPK Activity in Porcine Oocytes Maturing InVitro)

  • 이재달
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2124-2128
    • /
    • 2010
  • 본 연구에서는 MAPK 저해제인 U0126이 난자성숙과정에서 특히 감수분열, 미세소관 형성 그리고 액틴 필 라먼트 형성에 미치는 영향을 조사하였다. 그 결과 MAPK 단백질은 12시간째에 인산화되기 시작하여, 24시간째에 대부분 인산화 되었고 metaphase II에 이르기 까지 유지되었다. 배포단계(GV)에 있는 난자를 U0126의 $20{\mu}M$ 농도로 처리하였을 때 MAPK의 인산화가 완전히 억제되었으나 배포의 파열 단계(GVBD)로의 성숙에는 진행하였으나, metaphase I까지는 발달하지 못하였다. 또한 MAPK 저해제로 인해 비정상적인 방추사의 형성을 초래하였다. 난자를 배포의 파열단계(GVBD) 이후에 U0126을 처리하였을 때 극체의 방출은 정상 이였으나 중기 판의 배열과 염색체의 분열은 비정상적 이였다. 결론적으로, 유사분열 활성화 효소단백질인 MAPK의 활성은 돼지 난자의 체외성숙과정에서 배포단계(GV)의 염색체의 배열과 감수분열의 완성에 중요한 조절 인자임을 이번 연구를 통해 알 수 있었다.

Genetic disruption of ATAT1 causes RhoA downregulation through abnormal truncation of C/EBPβ

  • Jee-Hye Choi;Jangho Jeong;Jaegu Kim;Eunae You;Seula Keum;Seongeun Song;Ye Eun Hwang;Minjoo Ji;Kwon-Sik Park;Sangmyung Rhee
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.293-298
    • /
    • 2024
  • Microtubule acetylation has been shown to regulate actin filament dynamics by modulating signaling pathways that control actin organization, although the precise mechanisms remain unknown. In this study, we found that the downregulation of microtubule acetylation via the disruption ATAT1 (which encodes α-tubulin N-acetyltransferase 1) inhibited the expression of RhoA, a small GTPase involved in regulating the organization of actin filaments and the formation of stress fibers. Analysis of RHOA promoter and chromatin immunoprecipitation assays revealed that C/EBPβ is a major regulator of RHOA expression. Interestingly, the majority of C/EBPβ in ATAT1 knockout (KO) cells was found in the nucleus as a 27-kDa fragment (referred to as C/EBPβp27) lacking the N-terminus of C/EBPβ. Overexpression of a gene encoding a C/EBPβp27-mimicking protein via an N-terminal deletion in C/EBPβ led to competitive binding with wild-type C/EBPβ at the C/EBPβ binding site in the RHOA promoter, resulting in a significant decrease of RHOA expression. We also found that cathepsin L (CTSL), which is overexpressed in ATAT1 KO cells, is responsible for C/EBPβp27 formation in the nucleus. Treatment with a CTSL inhibitor led to the restoration of RHOA expression by downregulation of C/EBPβp27 and the invasive ability of ATAT1 KO MDA-MB-231 breast cancer cells. Collectively, our findings suggest that the downregulation of microtubule acetylation associated with ATAT1 deficiency suppresses RHOA expression by forming C/EBPβp27 in the nucleus through CTSL. We propose that CTSL and C/EBPβp27 may represent a novel therapeutic target for breast cancer treatment.

Single Nucleotide Polymorphism in the Promoter Region of H1 Histone Family Member N, Testis-specific (H1FNT) and Its Association Study with Male Infertility

  • Yang, Seung-Hee;Lee, Jin-U;Lee, Su-Man
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.201-205
    • /
    • 2010
  • The H1 histone family, member N, testis-specific (H1FNT) is exclusively expressed in the testis, and had its possible role for sperm chromatin formation. The purpose of this study is to investigate any genetic association of H1FNT gene with male infertility, especially at the promoter region. We examined the promoter single nucleotide polymorphisms (SNP) of H1FNT gene which is located within transcription factor binding site for its association with male infertility. The statistical analysis showed that the -1129A>T polymorphism was present at a statistically significance in male infertility (p=0.0059 and 0.0349 for hetero and risk type, respectively). The dual-luciferase promoter assay was performed to examine the polymorphic effect of this promoter SNP by the cloning of promoter region (1700bp fragment) into pGL3-basic vector. In our plasmid based reporter system, there is no big difference between wild and risk type. In conclusion, H1FNT -1129A>T promoter SNP is statistically significant with male infertility, especially with subfertile (non-azoospermia) group. Further analysis of its functional polymorphic effect in vivo may provide the biological significance of testis-specific histone with spermatogenesis.

Next-Generation Sequencing and Epigenomics Research: A Hammer in Search of Nails

  • Sarda, Shrutii;Hannenhalli, Sridhar
    • Genomics & Informatics
    • /
    • 제12권1호
    • /
    • pp.2-11
    • /
    • 2014
  • After the initial enthusiasm of the human genome project, it became clear that without additional data pertaining to the epigenome, i.e., how the genome is marked at specific developmental periods, in different tissues, as well as across individuals and species-the promise of the genome sequencing project in understanding biology cannot be fulfilled. This realization prompted several large-scale efforts to map the epigenome, most notably the Encyclopedia of DNA Elements (ENCODE) project. While there is essentially a single genome in an individual, there are hundreds of epigenomes, corresponding to various types of epigenomic marks at different developmental times and in multiple tissue types. Unprecedented advances in next-generation sequencing (NGS) technologies, by virtue of low cost and high speeds that continue to improve at a rate beyond what is anticipated by Moore's law for computer hardware technologies, have revolutionized molecular biology and genetics research, and have in turn prompted innovative ways to reduce the problem of measuring cellular events involving DNA or RNA into a sequencing problem. In this article, we provide a brief overview of the epigenome, the various types of epigenomic data afforded by NGS, and some of the novel discoveries yielded by the epigenomics projects. We also provide ample references for the reader to get in-depth information on these topics.

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

Enrichment of rare alleles within epigenetic chromatin marks in the first intron

  • Jo, Shin-Sang;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.9.1-9.5
    • /
    • 2019
  • In previous studies, we demonstrated that some sites in the first intron likely regulate gene expression. In the present work, we sought to further confirm the functional relevance of first intron sites by estimating the quantity of rare alleles in the first intron. A basic hypothesis posited herein is that genomic regions carrying more functionally important sites will have a higher proportion of rare alleles. We estimated the proportions of rare single nucleotide polymorphisms with a minor allele frequency < 0.01 located in several histone marks in the first introns of various genes, and compared them with those in other introns and those in 2-kb upstream regions. As expected, rare alleles were found to be significantly enriched in most of the regulatory sites located in the first introns. Meanwhile, transcription factor binding sites were significantly more enriched in the 2-kb upstream regions (i.e., the regions of putative promoters of genes) than in the first introns. These results strongly support our proposal that the first intron sites of genes may have important regulatory functions in gene expression independent of promoters.

계통발생에 따른 척추동물의 뇌후구에 대한 전자현미경적 연구 (Electron Microscopic Studies on Olfactory Bulbs in the Vertebrates by Phylogenetics)

  • 최명봉;정영화;서지은
    • Applied Microscopy
    • /
    • 제15권2호
    • /
    • pp.31-68
    • /
    • 1985
  • Authors are trying to unveil the ultrastructural organization of olfactory bulb, which has been summerized under light microscopic level or communicated only in some detail in different view point until now. For the critical point of view, since the phylogenetical approach will give the ultimate value in the correlative study between structural and functional bases (Brodal, 1969), the present study was carried out light and electron microscopic analyses of the structures of the neurons and synaptic organizations in olfactory bulbs from different animals in phylogenetical scale. We selected each one species from five animal classes: the house rabbit(Oryctolagus cuniculus var. domesticus [Gmelin]) from Mammalia, the domestic fowl (Gallus gallus domesticus Brisson) from Aves, the viper (Agkistrodon hylys [G.P. Pallas]) from Reptilia, a frog (Bombiana orientalis Boulenger) from Amphibia and the crussian carp (Carassius carassius [Linne]) from Pisces. For light microscopic study, samples were fixed in 10% formalin and paraffin sections were stained with hematoxylin-eosin. For the electron microscopic study, the tissues were fixed by perfusion through the heart or immersion with 1% paraform-aldehyde-glutaraldehyde mixture (phosphate buffer, pH 7.4), and final tissue block trimmed under dissecting microscope were osmicated (1% OsO4), they were embedded in Araldite or Epon 812, and ultrathin sections were made by LKB-V ultratome following the inspection of semi-thin sections stained with toluidine blue-borax solution. Ultra-thin sections contrasted with uranyl acetate and lead citrate were observed with JEM 100CX electron microscope. We have summerized our morphological analyses as follows: 1. The olfactory bulb of rabbit, viper and frog shows the eight layers of fila olfactoria, glomerular, external granular, external plexiform, mitral cell, internal plexiform, internal granular, medullary but domestic fowl shows the five layers of glomerular, fibrillar, mitral, granular and medullary and the three layers of fibrilla, glomerular and medullary in crussian carp. The sharpness of demarcation between the layers shows deferential tendency according to phylogenetical order. 2. Mitral cells of vertebrate have large triangular or oval shape with spherical nuclei which contain not so much chromatin. The cytoplasm contains numerous cell organelles, of which Nissl's bodies or granular endoplasmic reticula arranged as parallel strands. Development of granular endoplasmic reticula were declined as the phylogentical grade is going lower. 3. Tufted cells of all animal are mostly spindle or polygonal contour and contain oval nuclei which located in periphery of cytoplasm. The nuclei of rabbit, fowl, viper and frog has relatively space chromatin, but a nucleus of crussian carp contain irregularly aggregated chromatin in karyoplasm. Their cytoplasmic volume and cell organelle contents are in between those of mitral cell and granular cell. They contain moderate amount of mitochondria, granular endoplasmic reticula, a few Golgi complex, polysomes, lysosome, etc. 4. Granule of cells of all the vertebrate amimals studied exhibit similar features; cells and their dense nuclei show spherical or oval contour, and they have the thin rim of cytoplasm which contain only a few cell organelles. 5. In rabbit, the soma of mitral cells were in contact with boutons with two types of synaptic vesicles, that is, round and flat vesicles, especially flat vesicles in boutons were showing reciprocal synapses. However, in domestic fowls, vipers, frogs and crussian carps, there were found boutons showing only spherical synaptic vesicles. 6. The boutons containing round synaptic vesicles were made contact with the some of tufted cell of olfactory bulb in the rabbits, fowls, vipers and frogs, but no synaptic boutons were observed in soma of tufted cells in crussian carps. In the frogs, there were observed dendrites were contact with the soma of tufted cells. 7. In the neuropils of plexiform, granular and glomerular layers olfactory bulbs in the vertebrate, the synapses were axo-large dendrites, axo-median and small dendrites, dendrodendritic, and axo-axonal contacts. However, in the neuropil of crussian carps, synapses were observed only in glomerular layer.

  • PDF

Evaluation of sperm protamine deficiency and apoptosis in infertile men with idiopathic teratozoospermia

  • Dehghanpour, Fatemeh;Tabibnejad, Nasim;Fesahat, Farzaneh;Yazdinejad, Fatemeh;Talebi, Ali Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제44권2호
    • /
    • pp.73-78
    • /
    • 2017
  • Objective: Sperm morphology plays an important role in infertility, especially in cases of defects in the heads of spermatozoa. Tapered-head or elongated-head spermatozoa are examples of morphological abnormalities. The aim of this study was to compare the semen parameters, levels of protamine deficiency, and frequency of apoptosis between patients with normozoospermia and those with teratozoospermia with tapered-head spermatozoa. Methods: Fifty-two semen samples (27 patients with tapered-head sperm and 25 fertile men) were collected and semen analysis was performed according to the World Health Organization criteria for each sample. Protamine deficiency and the percentage of apoptotic spermatozoa were evaluated using chromomycin A3 (CMA3) staining and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays, respectively. Results: Sperm concentration, motility, and normal morphology in the tapered-head spermatozoa (cases) were significantly lower than in the normozoospermic samples (controls). CMA3-reactive spermatozoa (CMA3+) in the case group were more common than in the controls. Apoptotic spermatozoa (TUNEL-positive) were significantly more common in the cases than in the controls. Conclusion: This analysis showed that tapered-head spermatozoa contained abnormal chromatin packaging and exhibited a high rate of apoptosis, which can be considered to be an important reason for the impaired fertility potential in teratozoospermic patients with tapered-head spermatozoa.