DOI QR코드

DOI QR Code

Next-Generation Sequencing and Epigenomics Research: A Hammer in Search of Nails

  • Sarda, Shrutii (Center for Bioinformatics and Computational Biology, University of Maryland, College Park) ;
  • Hannenhalli, Sridhar (Center for Bioinformatics and Computational Biology, University of Maryland, College Park)
  • Received : 2013.11.10
  • Accepted : 2013.11.25
  • Published : 2014.03.31

Abstract

After the initial enthusiasm of the human genome project, it became clear that without additional data pertaining to the epigenome, i.e., how the genome is marked at specific developmental periods, in different tissues, as well as across individuals and species-the promise of the genome sequencing project in understanding biology cannot be fulfilled. This realization prompted several large-scale efforts to map the epigenome, most notably the Encyclopedia of DNA Elements (ENCODE) project. While there is essentially a single genome in an individual, there are hundreds of epigenomes, corresponding to various types of epigenomic marks at different developmental times and in multiple tissue types. Unprecedented advances in next-generation sequencing (NGS) technologies, by virtue of low cost and high speeds that continue to improve at a rate beyond what is anticipated by Moore's law for computer hardware technologies, have revolutionized molecular biology and genetics research, and have in turn prompted innovative ways to reduce the problem of measuring cellular events involving DNA or RNA into a sequencing problem. In this article, we provide a brief overview of the epigenome, the various types of epigenomic data afforded by NGS, and some of the novel discoveries yielded by the epigenomics projects. We also provide ample references for the reader to get in-depth information on these topics.

Keywords

References

  1. U.S. Department of Health and Human Services. NIH News National Institues of Health. International Consortium Announces the 1000 Genomes Project. Bethesda: National Human Genome Research Institutes, 2008. Accessed 2014 Jan 1. Available from: http://www.nih.gov/news/health/ jan2008/nhgri-22.htm.
  2. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337:1190-1195. https://doi.org/10.1126/science.1222794
  3. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975;188:107-116. https://doi.org/10.1126/science.1090005
  4. Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. Basic concepts of epigenetics. Fertil Steril 2013; 99:607-615. https://doi.org/10.1016/j.fertnstert.2013.01.117
  5. Baker M. Genomics: Genomes in three dimensions. Nature 2011;470:289-294. https://doi.org/10.1038/470289a
  6. Ptashne M. Epigenetics: core misconcept. Proc Natl Acad Sci U S A 2013;110:7101-7103. https://doi.org/10.1073/pnas.1305399110
  7. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669-681. https://doi.org/10.1016/j.cell.2007.01.033
  8. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev 2009;23:781-783. https://doi.org/10.1101/gad.1787609
  9. Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG. "Seq-ing" insights into the epigenetics of neuronal gene regulation. Neuron 2013;77:606-623. https://doi.org/10.1016/j.neuron.2013.01.034
  10. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245-254. https://doi.org/10.1038/ng1089
  11. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6-21. https://doi.org/10.1101/gad.947102
  12. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell 2013;155:27-38. https://doi.org/10.1016/j.cell.2013.09.006
  13. ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57-74. https://doi.org/10.1038/nature11247
  14. Turner BM. Defining an epigenetic code. Nat Cell Biol 2007; 9:2-6. https://doi.org/10.1038/ncb0107-2
  15. Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010;11:191-203. https://doi.org/10.1038/nrg2732
  16. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian deconvolution strategy for immunoprecipitation- based DNA methylome analysis. Nat Biotechnol 2008; 26:779-785. https://doi.org/10.1038/nbt1414
  17. Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 2010;38:391-399. https://doi.org/10.1093/nar/gkp992
  18. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005;33:5868-5877. https://doi.org/10.1093/nar/gki901
  19. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008;133: 523-536. https://doi.org/10.1016/j.cell.2008.03.029
  20. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012; 336:934-937. https://doi.org/10.1126/science.1220671
  21. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007; 316:1497-1502. https://doi.org/10.1126/science.1141319
  22. Rhee HS, Pugh BF. Comprehensive genome-wide protein- DNA interactions detected at single-nucleotide resolution. Cell 2011;147:1408-1419. https://doi.org/10.1016/j.cell.2011.11.013
  23. Bell O, Tiwari VK, Thomä NH, Schübeler D. Determinants and dynamics of genome accessibility. Nat Rev Genet 2011; 12:554-564. https://doi.org/10.1038/nrg3017
  24. Brogaard K, Xi L, Wang JP, Widom J. A map of nucleosome positions in yeast at base-pair resolution. Nature 2012;486: 496-501. https://doi.org/10.1038/nature11142
  25. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 2006;16:123-131.
  26. Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012;489: 83-90. https://doi.org/10.1038/nature11212
  27. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 2007;17:877-885. https://doi.org/10.1101/gr.5533506
  28. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science 2002;295:1306-1311. https://doi.org/10.1126/science.1067799
  29. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 2006; 38:1341-1347. https://doi.org/10.1038/ng1891
  30. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 2006;16: 1299-1309. https://doi.org/10.1101/gr.5571506
  31. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009;326:289-293. https://doi.org/10.1126/science.1181369
  32. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009;462:58-64. https://doi.org/10.1038/nature08497
  33. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012;22:1775-1789. https://doi.org/10.1101/gr.132159.111
  34. Zhou L, Li X, Liu Q, Zhao F, Wu J. Small RNA transcriptome investigation based on next-generation sequencing technology. J Genet Genomics 2011;38:505-513. https://doi.org/10.1016/j.jgg.2011.08.006
  35. Tucker KL. Methylated cytosine and the brain: a new base for neuroscience. Neuron 2001;30:649-652. https://doi.org/10.1016/S0896-6273(01)00325-7
  36. Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab 2000;11: 142-148. https://doi.org/10.1016/S1043-2760(00)00248-4
  37. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462:315-322. https://doi.org/10.1038/nature08514
  38. Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S. Histone modifications and nuclear architecture: a review. J Histochem Cytochem 2008;56:711-721. https://doi.org/10.1369/jhc.2008.951251
  39. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-45. https://doi.org/10.1038/47412
  40. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-1080. https://doi.org/10.1126/science.1063127
  41. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-395. https://doi.org/10.1038/cr.2011.22
  42. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012;9:215-216. https://doi.org/10.1038/nmeth.1906
  43. Tian Z, Tolić N, Zhao R, Moore RJ, Hengel SM, Robinson EW, et al. Enhanced top-down characterization of histone post-translational modifications. Genome Biol 2012;13:R86. https://doi.org/10.1186/gb-2012-13-10-r86
  44. Bintu L, Ishibashi T, Dangkulwanich M, Wu YY, Lubkowska L, Kashlev M, et al. Nucleosomal elements that control the topography of the barrier to transcription. Cell 2012;151:738-749. https://doi.org/10.1016/j.cell.2012.10.009
  45. Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 2004;36:900-905. https://doi.org/10.1038/ng1400
  46. Trifonov EN. Cracking the chromatin code: precise rule of nucleosome positioning. Phys Life Rev 2011;8:39-50. https://doi.org/10.1016/j.plrev.2011.01.004
  47. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature 2012;489:75-82. https://doi.org/10.1038/nature11232
  48. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 2008;132:311-322. https://doi.org/10.1016/j.cell.2007.12.014
  49. Harmston N, Lenhard B. Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res 2013;41:7185-7199. https://doi.org/10.1093/nar/gkt499
  50. de Wit E, de Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev 2012;26:11-24. https://doi.org/10.1101/gad.179804.111
  51. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008;322:750-756. https://doi.org/10.1126/science.1163045
  52. Koerner MV, Pauler FM, Huang R, Barlow DP. The function of non-coding RNAs in genomic imprinting. Development 2009; 136:1771-1783. https://doi.org/10.1242/dev.030403
  53. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010;42:1113-1117. https://doi.org/10.1038/ng.710
  54. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 2011; 71:3-7.
  55. Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012;338:1435-1439. https://doi.org/10.1126/science.1231776
  56. Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 2004;7:653-662. https://doi.org/10.1016/j.devcel.2004.10.003
  57. Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 2004; 6:784-791. https://doi.org/10.1038/ncb1155
  58. Havecker ER. Detection of small RNAs and microRNAs using deep sequencing technology. Methods Mol Biol 2011;732: 55-68. https://doi.org/10.1007/978-1-61779-083-6_5
  59. Ilott NE, Ponting CP. Predicting long non-coding RNAs using RNA sequencing. Methods 2013;63:50-59. https://doi.org/10.1016/j.ymeth.2013.03.019
  60. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 2012; 22:1813-1831. https://doi.org/10.1101/gr.136184.111
  61. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010;28: 1045-1048. https://doi.org/10.1038/nbt1010-1045
  62. Garraway LA, Lander ES. Lessons from the cancer genome. Cell 2013;153:17-37. https://doi.org/10.1016/j.cell.2013.03.002
  63. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 2012;22:1798-1812. https://doi.org/10.1101/gr.139105.112
  64. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012;489:91-100. https://doi.org/10.1038/nature11245
  65. Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, et al. Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription- related factors. Genome Biol 2012;13:R48. https://doi.org/10.1186/gb-2012-13-9-r48
  66. Vernot B, Stergachis AB, Maurano MT, Vierstra J, Neph S, Thurman RE, et al. Personal and population genomics of human regulatory variation. Genome Res 2012;22:1689-1697. https://doi.org/10.1101/gr.134890.111
  67. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009;106: 11667-11672. https://doi.org/10.1073/pnas.0904715106
  68. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458:223-227. https://doi.org/10.1038/nature07672
  69. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009; 459:108-112. https://doi.org/10.1038/nature07829
  70. Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J, et al. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput Biol 2013;9:e1002968. https://doi.org/10.1371/journal.pcbi.1002968
  71. Dong X, Greven MC, Kundaje A, Djebali S, Brown JB, Cheng C, et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol 2012;13:R53. https://doi.org/10.1186/gb-2012-13-9-r53
  72. Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res 2012;22:1711-1722. https://doi.org/10.1101/gr.135129.111
  73. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature 2012;489:109-113. https://doi.org/10.1038/nature11279
  74. DeMare LE, Leng J, Cotney J, Reilly SK, Yin J, Sarro R, et al. The genomic landscape of cohesin-associated chromatin interactions. Genome Res 2013;23:1224-1234. https://doi.org/10.1101/gr.156570.113
  75. Merkenschlager M, Odom DT. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 2013;152: 1285-1297. https://doi.org/10.1016/j.cell.2013.02.029
  76. Malin J, Aniba MR, Hannenhalli S. Enhancer networks revealed by correlated DNAse hypersensitivity states of enhancers. Nucleic Acids Res 2013;41:6828-6838. https://doi.org/10.1093/nar/gkt374
  77. Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, et al. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res 2013; 23:777-788. https://doi.org/10.1101/gr.152140.112
  78. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012; 148:84-98. https://doi.org/10.1016/j.cell.2011.12.014
  79. Sandhu KS, Li G, Poh HM, Quek YL, Sia YY, Peh SQ, et al. Large-scale functional organization of long-range chromatin interaction networks. Cell Rep 2012;2:1207-1219. https://doi.org/10.1016/j.celrep.2012.09.022
  80. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013;152:642-654. https://doi.org/10.1016/j.cell.2012.12.033
  81. Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige SL, et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 2013;154: 888-903. https://doi.org/10.1016/j.cell.2013.07.020
  82. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK, et al. A catalog of published genome-wide association studies. Bethesda: National Human Genome Research Institute, 2013. Accessed 2014 Jan 1. Available from: http://www.genome.gov/gwastudies.
  83. Sahu AD, Aniba R, Chang YP, Hannenhalli S. Epigenomic model of cardiac enhancers with application to genome wide association studies. Pac Symp Biocomput 2013:92-102.
  84. Ward LD, Kellis M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 2012;337:1675-1678. https://doi.org/10.1126/science.1225057
  85. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011;478:476-482. https://doi.org/10.1038/nature10530
  86. Adli M, Bernstein BE. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 2011;6:1656-1668. https://doi.org/10.1038/nprot.2011.402
  87. Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol 2013;14:405. https://doi.org/10.1186/gb-2013-14-6-405
  88. Boch J. TALEs of genome targeting. Nat Biotechnol 2011; 29:135-136. https://doi.org/10.1038/nbt.1767
  89. de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012;40:10596-10613. https://doi.org/10.1093/nar/gks863
  90. Ke X, Cortina-Borja M, Silva BC, Lowe R, Rakyan V, Balding D. Integrated analysis of genome-wide genetic and epigenetic association data for identification of disease mechanisms. Epigenetics 2013;8:1236-1244. https://doi.org/10.4161/epi.26407

Cited by

  1. Cooperation between phenotypic plasticity and genetic mutations can account for the cumulative selection in evolution vol.10, pp.0, 2014, https://doi.org/10.2142/biophysics.10.99
  2. Genetics of juvenile idiopathic arthritis vol.26, pp.5, 2014, https://doi.org/10.1097/BOR.0000000000000094
  3. Next-generation sequencing: hype and hope for development of personalized radiation therapy? vol.10, pp.1, 2015, https://doi.org/10.1186/s13014-015-0481-x
  4. Epigenetics and Child Psychiatry: Ethical and Legal Issues vol.33, pp.5, 2015, https://doi.org/10.1002/bsl.2207
  5. DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures vol.5, pp.1, 2015, https://doi.org/10.1038/srep09778
  6. Chromatinization of the KSHV Genome During the KSHV Life Cycle vol.7, pp.1, 2015, https://doi.org/10.3390/cancers7010112
  7. Evolutionary science as a method to facilitate higher level thinking and reasoning in medical training vol.2016, pp.1, 2016, https://doi.org/10.1093/emph/eow029
  8. Next-Generation Sequencing in the Understanding of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Biology vol.8, pp.4, 2016, https://doi.org/10.3390/v8040092
  9. Precision medicine in circadian rhythm sleep–wake disorders: current state and future perspectives vol.14, pp.2, 2017, https://doi.org/10.2217/pme-2016-0079
  10. Genetic advances in systemic lupus erythematosus vol.29, pp.5, 2017, https://doi.org/10.1097/BOR.0000000000000411
  11. The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer vol.7, pp.1, 2017, https://doi.org/10.3390/biom7010015
  12. Facioscapulohumeral Muscular Dystrophy As a Model for Epigenetic Regulation and Disease vol.22, pp.16, 2015, https://doi.org/10.1089/ars.2014.6090
  13. Polycomb group protein-mediated histone modifications during cell differentiation vol.7, pp.1, 2015, https://doi.org/10.2217/epi.14.61
  14. Functional conservation of sequence determinants at rapidly evolving regulatory regions across mammals vol.14, pp.10, 2018, https://doi.org/10.1371/journal.pcbi.1006451