• 제목/요약/키워드: chordal graph

검색결과 6건 처리시간 0.017초

COMPUTATION OF A (CANONICAL) DOUBLY PERFECT ELIMINATION ORDERING OF A DOUBLY CHORDAL GRAPH

  • Lee, Mahn-Hoon;Kim, Chang-Hwa
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.329-336
    • /
    • 1998
  • The class of doubly chordal graphs is a subclass of chordal graphs and a superclass of strongly chordal graphs which arise in so many application areas. Many optimization problems like domination and Steiner tree are NP-complete on chordal graps but can be solved in polynomial time on doubly chordal graphs. The central to designing efficient algorithms for doulby chordal graphs is the concept of (canonical)doubly perfect elimination orderings. We present linear time algorithms to compute a (canonical) double perfect elimination ordering of a doubly chordal graph.

SOME CHARACTERIZATIONS OF DOUBY CHORDAL GRAPHS

  • Kim, Chang-Hwa
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.65-72
    • /
    • 1998
  • Many optimization problems like domination and Steiner tree are NP-complete on chordal graphs but can be solved in polyno-mial time on doubly chordal graphs. Investigating properties of dou-bly chordal graphs probably help to design efficient algorithms for the graphs. We present some characterizations of dobly chordal graphs which are based on clique matrices and neighborhood matrics also men-tioned how a doubly perfect elimination ordering of a doubly chordal graph can be computed from the results.

코달 및 순열 그래프의 레이블링 번호 상한에 대한 연구 (The Study on the Upper-bound of Labeling Number for Chordal and Permutation Graphs)

  • 정태의;한근희
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2124-2132
    • /
    • 1999
  • Given a graph G=(V,E), Ld(2,1)-labeling of G is a function f : V(G)$\longrightarrow$[0,$\infty$) such that, if v1,v2$\in$V are adjacent, $\mid$ f(x)-f(y) $\mid$$\geq$2d, and, if the distance between and is two, $\mid$ f(x)-f(y) $\mid$$\geq$d, where dG(,v2) is shortest distance between v1 and in G. The L(2,1)-labeling number (G) is the smallest number m such that G has an L(2,1)-labeling f with maximum m of f(v) for v$\in$V. This problem has been studied by Griggs, Yeh and Sakai for the various classes of graphs. In this paper, we discuss the upper-bound of ${\lambda}$ (G) for a chordal graph G and that of ${\lambda}$(G') for a permutation graph G'.

  • PDF

GRAPHS WITH ONE HOLE AND COMPETITION NUMBER ONE

  • KIM SUH-RYUNG
    • 대한수학회지
    • /
    • 제42권6호
    • /
    • pp.1251-1264
    • /
    • 2005
  • Let D be an acyclic digraph. The competition graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that (u, x) and (v, x) are arcs of D. The competition number of a graph G, denoted by k(G), is the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph. It is known to be difficult to compute the competition number of a graph in general. Even characterizing the graphs with competition number one looks hard. In this paper, we continue the work done by Cho and Kim[3] to characterize the graphs with one hole and competition number one. We give a sufficient condition for a graph with one hole to have competition number one. This generates a huge class of graphs with one hole and competition number one. Then we completely characterize the graphs with one hole and competition number one that do not have a vertex adjacent to all the vertices of the hole. Also we show that deleting pendant vertices from a connected graph does not change the competition number of the original graph as long as the resulting graph is not trivial, and this allows us to construct infinitely many graph having the same competition number. Finally we pose an interesting open problem.

유전 알고리즘을 이용한 최소 무게 삼각화 문제 연구 (Solving Minimum Weight Triangulation Problem with Genetic Algorithm)

  • 한근희;김찬수
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.341-346
    • /
    • 2008
  • Minimum Weight Triangulation (MWT) 는 최적화 문제로서 주어진 그래프에 대한 최소 무게 삼각화를 계산하는 문제이다. 본 문제는 많은 다른 그래프 문제들처럼 일반 그래프에 대하여 NP-hard 계열의 문제로 알려져 있으며 지금까지 simulated annealing 및 유전 알고리즘 등 heuristic algorithm 들이 제시되어 왔다. 본 논문에서는 MWT 문제에 대하여 GA-FF 라 불리우는 새로운 유전 알고리즘을 제시하며 또한 그성능이 기존의 유전 알고리즘보다 더욱 효율적임을 보인다.

삭제나무를 이용한 새로운 순서화 방법 (A New Ordering Method Using Elimination Trees)

  • 박찬규;도승용;박순달
    • 대한산업공학회지
    • /
    • 제29권1호
    • /
    • pp.78-89
    • /
    • 2003
  • Ordering is performed to reduce the amount of fill-ins of the Cholesky factor of a symmetric positive definite matrix. This paper proposes a new ordering algorithm that reduces the fill-ins of the Cholesky factor iteratively by elimination tree rotations and clique separators. Elimination tree rotations have been used mainly to reorder the rows of the permuted matrix for the efficiency of storage space management or parallel processing, etc. In the proposed algorithm, however, they are repeatedly performed to reduce the fill-ins of the Cholesky factor. In addition, we presents a simple method for finding a minimal node separator between arbitrary two nodes of a chordal graph. The proposed reordering procedure using clique separators enables us to obtain another order of rows of which the number of till-ins decreases strictly.