• Title/Summary/Keyword: chord distribution

Search Result 75, Processing Time 0.024 seconds

A Study about Flow Characteristic on Delta wing with/without LEX by PIV (PIV에 의한 델타형 날개에서의 LEX 부착여부에 따른 유동특성에 관한 연구)

  • LEE Hyun;KIM Beom-Seok;SOHN Myong-Hwan;LEE Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.771-774
    • /
    • 2002
  • Highly sweep leading edge extensions(LEX) applied to delta wings have greatly improved the subsonic maneuverability of contemporary fighters. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ}$) and six measuring sections of chord length($30{\%},\;40{\%},\;50{\%},\;60{\%},\;70{\%},\;80{\%}$). Sideslip effect in case of the LEX was also studied for two sideslip(yaw) angles($5^{\circ},\;10^{\circ}$) at one angle of attack(20). Distribution of time-averaged velocity vectors and vorticity over the delta wing model were compared along the chord length direction. Quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarify the significance of the LEX existence. Animation presentation in velocity distribution was also implemented to reveal the effect of LEX with wing vortex interaction.

  • PDF

Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography (X-ray CT를 이용한 베레아 사암의 공극크기분포 산정)

  • Kim, Kwang Yeom;Kim, Kyeongmin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.353-362
    • /
    • 2014
  • Pore structures in porous rock play an important role in hydraulic & mechanical behaviour of rock. Porosity, size distribution and orientation of pores represent the characteristics of pore structures of porous rock. While effective porosity can be measured easily by conventional experiment, pore size distribution is hard to be quantified due to the lack of corresponding experiment. We assessed pore size distribution of Berea sandstone using X-ray CT image based analysis combined with associated images processing, i.e., image filtering, binarization and skeletonization subsequently followed by the assessment of local thickness and star chord length. The aim of this study is to propose a new and effective way to evaluate pore structures of porous rock using X-ray CT based analysis for pore size distribution.

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF

3차원 표면효과익의 자유표면 효과에 관한 수치연구

  • Gwak, Seung-Hyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.79-86
    • /
    • 1998
  • A three-dimensional WIG (Wing In Ground effect) moving above free surface is numerically studied by means of finite difference techniques. The air flow field around the WIG is analyzed by MAC (Marker & Cell) method, and interactions between WIG and the free surface are appeared as the variation of pressure distribution acting on the free surface. To analyze the wavemaking phenomena by those pressure distributions, the NS (Navier-Stokes) solver is employed in which nonlinearities of the free surface conditions can be included. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord ratio. The section shape of model is NACA0012 with the span/chord ratio of 3.0. Through computational results, it is confirmed that the effect of free surface is small enough to treat it as a rigid wavy wall.

  • PDF

Lift/Drag Prediction of 3-Dimensional WIG Moving Above Free Surface

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.384-391
    • /
    • 2001
  • The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.

  • PDF

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.

Vortex Features in a Half-ducted Axial Fan with Large Bellmouth (Effect of Tip Clearance)

  • Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.307-316
    • /
    • 2011
  • In order to clarify the features of tip leakage vortex near blade tip region in a half-ducted axial fan with large bellmouth, the experimental investigation was carried out using a 2-dimensional LDV system. Three sizes of tip clearance (TC) were tested: those sizes were 1mm (0.55% of blade chord length at blade tip), 2mm (1.11% of blade chord length at blade tip) and 4mm (2.22% of blade chord length at blade tip), and those were shown as TC=1mm, TC=2mm and TC=4mm, respectively. Fan characteristic tests and the velocity field measurements were done for each TC. Pressure - flow-rate characteristics and two-dimensional velocity vector maps were shown. The vortex trace and the vortex intensity distribution were also illustrated. As a result, a large difference on the pressure - flow-rate characteristics did not exist for three tip clearance sizes. In case of TC=4mm, the tip leakage vortex was outflow to downstream of rotor was not confirmed at the small and reference flow-rate conditions. Only at the large flow-rate condition, its outflow to downstream of rotor existed. In case of TC=2mm, overall vortex behaviors were almost the same ones in case of TC=4mm. However, the vortex trace inclined toward more tangential direction. In case of TC=1mm, the clear vortex was not observed for all flow-rate conditions.

An Experimental Study on the Prediction of Yield Load Using Ring Analysis Method in Circular Tubular X-Type Cross Sections (링해석법에 의한 X형 강관 격점부의 항복하중 예측에 관한 실험적 연구)

  • Park, Il Min;Na, Seon Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.43-54
    • /
    • 1999
  • The divergence connection between steel circular tubes is widely used in such structures as factory facilities, steel circular hollow section truss, and off-shore tower. Steel circular hollow section (SCHS) have close section, and it makes their per-unit production expense higher than open sectioned products like L-shape, H-shape steels, but the sectional resistance of SCHS against vertical compression and torsion is very high. Despite the structural merits of SCHS, however, many engineers dislike to use them in their design because of uncertainty regarding the stress distribution and deformation behavior at their connections. Therefore, this thesis dealt with X-type connections, the most common forms of connection, and studied their load-deformation relationship. It observed how to show the load-deformation relationship at steel circular tube connections according to the diameter-thickness ratio (D/T) of the chord and diameter of branch-diameter of chord ratio (d/D) and suggested prediction yield load using by ring analysis method.

  • PDF

Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (I) - Near-tip Blade Surface - (환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (I) - 블레이드 끝단 인접 표면 -)

  • Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.485-494
    • /
    • 2005
  • For the extensive investigation of local heat/mass transfer on the near-tip surface of turbine blade, experiments were conducted in a low speed stationary annular cascade. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$ of the blade chord. Detailed mass transfer coefficient on the blade near-tip surface was obtained using a naphthalene sublimation technique. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ Extremely complex heat transfer characteristics are observed on the blade surface due, to complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. Especially, the suction side surface of the blade has higher heat/mass transfer coefficients and more complex distribution than the pressure side surface, which is related to the leakage flow. For all the tested Reynolds numbers, the heat/mass transfer characteristics on the turbine blade are the similar. The overall averaged $Sh_{c}$ values are proportional to $Re_{c}^{0.5}$ on the stagnation region and the laminar flow region such as the pressure side surface. However, since the flow is fully turbulent in the near-tip region, the heat/mass transfer coefficients are proportional to $Re_{c}^{0.8}.$

A Study about Vortex Flow Characteristics on Delta Wing by Time-resolving PIV (시간해상도 PIV를 이용한 델타형 날개에서의 와류 유동특성에 관한 연구)

  • Choi, Min-Seon;Lee, Hyun;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.493-499
    • /
    • 2004
  • The dominant effect of the interaction between vortices, generated by the addition of the Leading Edge Extension(LEX) in front of the wing, was well observed in this experiment. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vertex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$) and six measuring sections(30%, 40%, 50%, 60%, 70%, 80%) of chord length. Distributions of time-averaged velocity vectors and vortices over the delta wing model were compared along the chord length direction. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.