• Title/Summary/Keyword: cholinesterase inhibition

Search Result 54, Processing Time 0.025 seconds

Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis

  • Pang, Jun-Rui;How, Sher-Wei;Wong, Kah-Hui;Lim, Siew-Huah;Phang, Siew-Moi;Yow, Yoon-Yen
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2022
  • Anti-cholinesterase (ChE)s are commonly prescribed as the symptomatic treatment of Alzheimer's disease. They are applied to prevent the breakdown of neurotransmitter acetylcholine (ACh) that bind to muscarinic and nicotinic receptors in the synaptic cleft. Seaweeds are one of the richest sources of bioactive compounds for both nutraceuticals and pharmacognosy applications. This study aimed to determine the anti-ChEs activity of Gracilaria manilaensis, one of the red seaweeds notables for its economic importance as food and raw materials for agar production. Methanol extracts (GMM) of G. manilaensis were prepared through maceration, and further purified with column chromatography into a semi-pure fraction. Ellman assay was carried out to determine the anti-acetylcholinesterase (AChE) and anti-butyrylcholinesterase (BuChE) activities of extracts and fractions. Lineweaver-Burk plot analysis was carried out to determine the inhibition kinetic of potent extract and fraction. Major compound(s) from the most potent fraction was determined by liquid chromatography-mass spectrometry (LCMS). GMM and fraction G (GMMG) showed significant inhibitory activity AChE with EC50 of 2.6 mg/mL and 2.3 mg/mL respectively. GMM and GMMG exhibit mixed-inhibition and uncompetitive inhibition respectively against AChE. GMMG possesses neuroprotective compounds such as cynerine A, graveolinine, militarinone A, eplerenone and curumenol. These findings showed a promising insight of G. manilaensis to be served as a nutraceutical for neuronal health care in the future.

Synthesis and in vitro Assay of New Triazole Linked Decursinol Derivatives Showing Inhibitory Activity against Cholinesterase for Alzheimer’s Disease Therapeutics

  • Park, Jung-Youl;Shin, Sujeong;Park, Kyoung Chan;Jeong, Eunju;Park, Jeong Ho
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • With the goal of developing Alzheimer’s disease therapeutics, we have designed and synthesized new triazole linked decursinol derivatives having potency inhibitory activities against cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)]. Since inhibition of cholinesterase (ChE) is still considered to be one of the most effective targets to treat AD patients, many new classes of ChE inhibitors have been synthesized. In an effort of identifying new type of cholinergic drug, decursinol derivatives 11-17 have been synthesized between decursinol and other biological interesting compounds such as lipoic acid, polyphenols, etc by using the click reaction and then evaluated their biological activities. Compound 12 (IC50 = 5.89 ± 0.31 mM against BuChE) showed more effective inhibitory activity against BuChE than galantamine (IC50 = 9.4 ± 2.5 mM). Decursinol derivatives can be considered a new class inhibitor for BuChE and can be applied to be a novel drug candidate to treat AD patients.

Cholinesterase Inhibitory Activities of Alkaloids from Corydalis Tuber

  • Hung, Tran Manh;Thuong, Phuong Thien;Nhan, Nguyen Trung;Mai, Nguyen Thi Thanh;Quan, Tran Le;Choi, Jae-Sue;Woo, Mi-Hee;Min, Byung-Sun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.108-112
    • /
    • 2011
  • Several isoquinoline alkaloids (1 - 18), which have basic chemical structures as protoberberine and aporphine skeletones, were evaluated for their inhibitory activities on AChE and BuChE. Among them, compounds 3, 4, 6, 8 and 12 showed the potent AchE activity with the $IC_{50}$ values ranging from $10.2{\pm}0.5\;{\mu}M$ to $24.5{\pm}1.6\;{\mu}M$, meanwhile, compound 14 - 17 exhibited strong inhibitory activity with $IC_{50}$ values from $2.1{\pm}0.2$ to $5.5{\pm}0.3\;{\mu}M$. Compounds 14 - 17 exhibited selective inhibition for AChE compared with BuChE. The isoquinoline alkaloid possesses aromatic methylenedioxy groups and quaternary nitrogen atoms are crucial for the anti-cholinesterase inhibitory activity.

Butyrylcholinesterase Inhibitory Activity and GC-MS Analysis of Carica papaya Leaves

  • Khaw, Kooi-Yeong;Chear, Nelson Jeng Yeou;Maran, Sathiya;Yeong, Keng Yoon;Ong, Yong Sze;Goh, Bey Hing
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2020
  • Carica papaya is a medicinal and fruit plant owing biological activities including antioxidant, antiviral, antibacterial and anticancer. The present study aims to investigate the acetyl (AChE) and butyryl (BChE) cholinesterase inhibitory potentials of C. papaya extracts as well as their chemical compositions. The chemical composition of the active extract was identified using a gas chromatography-mass spectrometry (GC-MS). Ellman enzyme inhibition assay showed that the alkaloid-enriched leaf extract of C. papaya possessed significant anti-BChE activity with an enzyme inhibition of 75.9%. GC-MS analysis showed that the alkaloid extract composed mainly the carpaine (64.9%) - a major papaya alkaloid, and some minor constituents such as aliphatic hydrocarbons, terpenes and phenolics. Molecular docking of carpaine revealed that this molecule formed hydrogen bond and hydrophobic interactions with choline binding site and acyl pocket. This study provides some preliminary findings on the potential use of C. papaya leaf as an herbal supplement for the prevention and treatment of Alzheimer's disease.

Health Risk Evaluation of the Vinylhouse Workers with Exposure to Pesticide (비닐하우스 재배농민의 농약에 의한 인체 위해성 연구)

  • Yang, Jae-Ho;Park, Jung-Han
    • Journal of agricultural medicine and community health
    • /
    • v.19 no.2
    • /
    • pp.107-118
    • /
    • 1994
  • Health effects of pesticide among vinylhouse workers in Sangjoo County, Kyungpook Province were assessed by measuring cholinesterase, glutathion reductase, and methemoglobin. Activities of cholinesterases among vinylhouse workers and general farmers were 3.89U and 3.98U in serum and 5.29U and 5.50U in red blood cells, respectively. While levels of methemoglobin between vinylhouse workers(0.16%) and general farmers(0.17%) were very similar, glutathione reductase among vinylhouse workers were 8% lower than that of general farmers. Inhibition of RBC cholinesterase among vinylhouse workers was two times greater than general farmers, suggesting a greater exposure of vinylhouse workers to the organophosphate pesticides. Methemoglobin level among vinylhouse workers with more than or equal to 10 vinylhouse units was 13% higher than that of the workers with less than 10 units. Vinylhouse workers using protective gears during pesticide spray showed higher level of reduced glutathione and lower level of methemoglobin, as compared to the non-users. This indicates that protective gears play an important role against pesticide exposure. Vinylhouse workers practicing good personal hygiene showed a higher level of reduced glutathione, as compared to those with poor personal hygiene, indicating that personal hygiene is also an important factor in reducing pesticide exposure. The present study represents a first attempt to analyze cholinesterase, methemoglobin and glutathione reductase activities among the vinylhouse workers. While neither vinylhouse workers nor general farmers showed abnormal findings among biochemical parameters used in the present study, increased level of methemoglobin and decrease of glutathione reductase activity among vinylhouse workers suggest that these workers have been subject to a higher exposure of pesticide than general farmers.

  • PDF

Garcinexanthone G, a Selective Butyrylcholinesterase Inhibitor from the Stem Bark of Garcinia atroviridis

  • Khaw, Kooi-Yeong;Murugaiyah, Vikneswaran;Khairuddean, Melati;Tan, Wen-Nee
    • Natural Product Sciences
    • /
    • v.24 no.2
    • /
    • pp.88-92
    • /
    • 2018
  • The present study was undertaken to investigate the isolated compounds from the stem bark of Garcinia atroviridis as potential cholinesterase inhibitors and the ligand-enzyme interactions of selected bioactive compounds in silico. The in vitro cholinesterase results showed that quercetin (3) was the most active AChE inhibitor ($12.65{\pm}1.57{\mu}g/ml$) while garcinexanthone G (6) was the most active BChE inhibitor ($18.86{\pm}2.41{\mu}g/ml$). It is noteworthy to note that compound 6 was a selective inhibitor with the selectivity index of 11.82. Molecular insight from docking interaction further substantiate that orientation of compound 6 in the catalytic site which enhanced its binding affinity as compared to other xanthones. The nature of protein-ligand interactions of compound 6 is mainly hydrogen bonding, and the hydroxyl group of compound 6 at C-10 is vital in BChE inhibition activity. Therefore, compound 6 is a notable lead for further drug design and development of BChE selective inhibitor.

Protective Effect of Physostigmine and Neostigmine against Acute Toxicity of Parathion in Rats

  • Jun, Jung-Won;Kim, Young-Chul
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.330-335
    • /
    • 1991
  • The effects of physostigmine and neostigmine on the parathin induced toxicity were examined in adult female rats. Physostigmine $(100\;{\mu}g/kg,\;ip)$ or neostigmine $(200\;{\mu}g/kg,\;ip)$ inhibited acetylcholinesterase (AChE) and cholinesterase (ChE) activities in blood, brain and lung when the enzyme activity was measured 30 min after the treatment. At the doses of two carbamates equipotent on brain AChE, neostigmine showed greater inhibition on peripheral AChE/ChE. The enzyme activity returned to normal in 120 min following the carbamates except in the lung of rats treated with neostigmine. Carbamates administered 30 min prior to parathion (2 mg/kg) antagonized the inhibition of AChE/ChE by parathion when the enzyme activity was measured 2 hr following parathion. Neostigmine showed greater protective effect on peripheral AChE/ChE. The effect of either carbamate on AChE/ChE was not significant 2 hr beyond the parathion treatment. Carbamates decreased the mortality of rats challenged with a lethal dose of parathion (4 mg/kg, ip) either when treated alone or in combination with atropine (10 mg/kg, ip). Lethal action of paraoxon (1.5 mg/ks ip), the active metabolite of parathion was also decreased by the carbamate treatment indicating that the protection was not mediated by competitive inhibition of metabolic conversion of parathion to paraoxon. The results suggest that carbamylation of the active sites may not be the sole underlying mechanism of protection provided by the carbamates.

  • PDF

Effect of Leonurus japonicus Houtt. on Scopolamine-induced Memory Impairment in Mice (Scopolamine 유발 기억 손상 마우스에서 익모초의 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Jang, Gwi Yeong;Seo, Kyung Hye;Kim, Mi Ryeo;Choi, Yun Hee;Jung, Ji Wook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Cognitive impairment is symptoms of dementia, a degenerative brain disease that is drawing attention in a rapidly aging society. This study was conducted to investigate the improvement of cognitive function of Leonurus japonicus on scopolamine-induced memory impairment in mice and the effect and mechanism of memory recovery. In vivo studies were conducted on mice orally pretreated with L. japonicus in doses of 50, 100 and 200 mg/kg (p.o.) and scopolamine (1 mg/kg, i.p.) were injected 30 min before the behavioral task. Antioxidant activity was assessed by 2,2-diphenyl-1-picryl hydrazyl (DPPH) assay and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and acetylcholinesterase (AChE) inhibition activity evaluated by Ellman's method. In behavior studies showed that L. japonicus has an improved the memory of scopolamine-treated mice in Y-maze, passive avoidance and Morris water maze test. In addition, L. japonicus was also exerted free radical scavenging activity and inhibited acetyl cholinesterase activity. These results suggest that L. japonicus improves short-term and long-term memory in scopolamine-induced memory decline model and prevents scopolamine-induced memory impairments through in reduced oxidative stress and acetyl cholinesterase inhibition effect. Thus, L. japonicus is related to functional medicinal materials for prevention and treatment of human dementia patients.