• 제목/요약/키워드: cholesterol sensor

검색결과 12건 처리시간 0.019초

Highly Sensitive Cholesterol Sensors Using Mixture of Cholesterol Oxidase and ZnO Nanoparticles on Plastic

  • Park, Sukhyung;Cho, Kyoungah;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.136-138
    • /
    • 2014
  • In this study, cholesterol sensors consisting of a mixture of cholesterol oxidase (ChOx) and zinc oxide (ZnO) nanoparticles (NPs) are constructed on plastic substrates and their sensing characteristics are examined in air. The current of the ChOx-ZnO NP film decreases in magnitude as cholesterol molecules are adsorbed on the film, due to the resulting increase in the number of electrons generated by the reaction between the cholesterol and the ChOx. The cholesterol sensor shows a high sensitivity of $1.08{\mu}A/mM$ and a wide detection range from 10 nM to 1 mM.

산화아연 나노섬유 기반 콜레스테롤 센서의 제작과 성능 (Fabrication and Sensing Capability of Cholesterol Sensors Based on ZnO Nanofibers)

  • 조소연;김지영;김상섭
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.281-285
    • /
    • 2013
  • In the present work, ZnO nanofibers were applied to electrode materials for the detection of cholesterol. ZnO nanofibers were synthesized using the electrospinning technique with zinc acetate as a precursor. Electrospinning-synthesized ZnO nanofibers were uniformly distributed by properly controlling the electrospinning parameters. After the calcination treatment, nanofibers of pure ZnO phase were synthesized. Then, these fibers were successfully placed on Au-coated glass substrates by dispersion of ZnO nanofibers in ethanol, dropping, and drying, in sequence. Cholesterol oxidase was then immobilized onto the surface of the ZnO nanofibers. To enhance the immobilization, Nafion was additionally applied. The sensing performances of the fabricated ZnO nanofibers-based sensors were analyzed by cyclic voltammetry in terms of cholesterol concentration ranging from 100 to 400 mg/dl. In the I-V curves, measured by cyclic voltammetry, the ZnO nanofiber-based sensor showed a proportional current behavior with cholesterol concentrations in phosphate buffered saline solution. The sensitivity was measured and found to be $30.7nA/mM{\cdot}cm^2$, which is comparable to the values reported in the literature. After not only optimizing the shape of the ZnO nanofibers but also improving the adhesion nature between the ZnO nanofibers and the Au conducting layer, these fibers can be a good candidate for electrode materials in devices used to detect low concentrations of cholesterol in blood.

탄소나노튜브를 이용하여 개조한 콜레스테롤 바이오 센서 개발 (Development of a cholesterol biosensor modified with carbon nanotube)

  • 김해동
    • 분석과학
    • /
    • 제28권6호
    • /
    • pp.425-429
    • /
    • 2015
  • 탄소나노튜브를 이용하여 변형한 콜레스테롤 측정을 위한 바이오 센서를 개발하였다. 개발된 콜레스테롤 바이오 센서는 일회용으로 콜레스테롤의 효소반응에서 전자전달을 증진시키기 위하여 탄소잉크로 스크린 프린트된 전극을 탄소나노튜브를 이용하여 변형하였으며, 변형한 탄소나노튜브 전극위에 콜레스테롤 산화효소와 과산화효소, 전자매개 물질로 페로시안 칼륨을 도포하여 제작하였다. 탄소나노튜브를 이용하여 변형한 콜레스테롤 바이오 센서는 전기화학적으로 콜레스테롤 측정시 매우 신속하고 안정된 신호를 나타내었다. 개발된 콜레스테롤 센서는 소량의 (0.5 μL) 시료로 총 콜레스테롤 100~400 mg/dL 영역에서 5초 이내에 직선적인 감응을 나타내었으며 좋은 재현성을 나타내었다(CV 4.0% 이하).

생체 지질막의 $\pi$-A 특성 및 누적 상태 ($\pi$-A Characteristics and Deposition Status of Biological Lipid Layers)

  • 최용성;박만철;권영수;장정수;배진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.860-863
    • /
    • 1992
  • In this paper, we investigate $\pi$-A isotherms of biological lipid layer such as cholesterol and phosphatidyl choline to study a gas sensor characteristics which response only to specific materials. And, we also deposit it on the surface of quartz crystal by vertical dipping method and horizontal lifting method. Then, we evaluate the deposition status of cholesterol and phosphatidyl choline LB film using AT-cut quartz crystal. We obtain the following results: (1) Cholesterol's solid surface pressure is about 20$\sim$40(dyne/cm) and limiting area is about 50${\AA}^2$/molecule. And, phosphatidyl choline's surface pressure is about 25$\sim$40(dyne/cm) and limiting area is about 20 ${\AA}^2$/molecule. (2) When LB films are deposited, the deposition ratio is coincident with the frequency shift. Therefore, we can evaluate the deposition status of LB film. (3) For cholesterol, Y type LB films are deposited up to 15 layers by vertical dipping method. (4) For phosphatidyl choline, X typo LB films are deposited to 15 layers by horizontal lifting method. But, in case of vertical dipping method, the deposition status is not good.

  • PDF

실란화 공정으로 제작된 콜레스테롤 센서의 전극 표면적에 따른 감도 특성 (Sensitivity dependence on the effective surface area for cholesterol biosensor fabricated by silanization process)

  • 송민정;윤동화;진준형;민남기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2114-2116
    • /
    • 2004
  • 센서의 소형화 되는 추세에 전극 면적은 sensitivity의 중요한 요인이다. 본 연구에서는 콜레스테롤을 측정하기 위해 각각 planar 전극과 porous 전극에 효소 고정화 방법으로 covalent binding인 silanization 공정을 이용하여 전극 면적에 따른 전기화학적 감도를 비교하였다. Handles-Sevcik equation을 이용하여 전극 면적을 구한 결과 planar 전극의 경우 0.1608 $cm^2$, porous 전극의 경우 0.5054 $cm^2$로 porous 전극 면적이 planar전극에 비해 약 3.1배 증가하였다. 또, planar 센서의 sensitivity는 0.08567 ${\mu}A/mM{\cdot}cm^2$이고 porous 센서의 sensitivity는 planar sensor에 비해 약 3.1배 증가한 0.2656 ${\mu}A/mM{\cdot}cm^2$였다. 따라서 porous sensor의 sensitivity의 증가는 전극 면적의 증가에 따른 것이라고 할 수 있다.

  • PDF

Individualized Exercise and Diet Recommendations: An Expert System for Monitoring Physical Activity and Lifestyle Interventions in Obesity

  • Nam, Yunyoung;Kim, Yeesock
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2434-2441
    • /
    • 2015
  • This paper proposes an exercise recommendation system for treating obesity that provides systematic recommendations for exercise and diet. Five body indices are considered as indicators for recommend exercise and diet. The system also informs users of prohibited foods using health data including blood pressure, blood sugar, and total cholesterol. To maximize the utility of the system, it displays recommendations for both indoor and outdoor activities. The system is equipped with multimode sensors, including a three-axis accelerometer, a laser, a pressure sensor, and a wrist-mounted sensor. To demonstrate the effectiveness of the system, field tests are carried out with three participants over 20 days, which show that the proposed system is effective in treating obesity.

Development and Evaluation of Non-Hydrous Skin Analogue Liquid Crystal using Thermo-Sensitivity Smart Sensor

  • Yoo, Kwang-Ho;Hong, Jae-Hwa;Eun, So-Hee;Jeong, Tae-Hwa;Jeong, Kwan-Young
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.367-374
    • /
    • 2014
  • In this study, skin permeation enhancement was confirmed by designing it to have a structure and composition similarity to the intercellular lipids that improve miscibility with skin by cross-linked lipids poloxamer. The cross-linked lipids poloxamer was synthesized and analyzed by 1H NMR that structure dose had conjugated pluronic with ceramide3. Active component is released by modification of liquid crystal structure because PPO part, large-scale molecule block of pluronic, has hydrophobic nature at skin temperature of $35^{\circ}C$. Conjugated pluronic with ceramide3 was synthesized using Pluronic F127 and p-NPC (4-nitrophenyl chloroformate) at room temperature yielded 89%. Pluronic(Ceramide 3-conjugated Pluronic) was synthesized by reaction of p-NP-Pluronic with Ceramide3 and DMAP. The yield was 51%. This cross-linked lipids poloxamer was blended and dissolved at isotropic state with skin surface lipids, phospholipid, ceramide, cholesterol and anhydrous additive solvent. Next step was preceded by ${\alpha}$-Transition at low temperature for making the structure of Meso-Phase Lamella, and non-hydrous skin analogue liquid crystal using thermo-sensitivity smart sensor, lamellar liquid crystal structure through aging time. For confirmation of conjugation thermo-sensitivity smart sensor and non-hydrous skin analogue liquid crystal, structural observation and stability test were performed using XRD(Xray Diffraction), DSC(Differential Scanning Calorimetry), PM (Polarized Microscope) And C-SEM (Cryo-Scanning Electron Microscope). Thermo-sensitivity observation by Franz cell revealed that synthesized smart sensor shown skin permeation effect over 75% than normal liquid crystal. Furthermore, normal non-hydrous skin analogue liquid crystal that not applied smart sensor shown similar results below $35^{\circ}C$ of skin temperature, but its effects has increased more than 30% above $35^{\circ}C$.

Participation of SRE4, an URE1 Enhancer Core Sequence, in the Sterol-Mediated Transcriptional Upregulation of the Human Apolipoprotein E Gene

  • Min, Jung-Hwa;Paik, Young-Ki
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.565-571
    • /
    • 1998
  • The expression of the endogenous human apolipoprotein(apo)E gene was significantly induced when HepG2 cells were treated with exogenous 25-hydroxy-cholesterol. This sterol-mediated apoE gene upregulation appears to require the participation of a positive element for the apoE gene transcription (PET) ( -169/ -140), a core sequence of upstream regulatory element (URE)1 enhancer of the human apoE gene. This PET was renamed as sterol regulatory element (SRE)4 based on its new role as a sensor for the level of intracellular sterol. Furthermore, a gel mobility shift analysis showed that binding activity of the SRE4 binding protein (BP) obtained from HepG2 cells was induced by sterol treatment, while that from either MCF7 or BT20 cells remained unchanged. Binding activity of SRE4BP was also induced in mouse macrophage cells, J774A.1, by sterol treatment, but it was drastically reduced when cells were subjected to treatment of AY-9944, a potent inhibitor for sterol synthesis. However, binding activity of Spl, which is a co-binding protein to the SRE4 region, remained the same in either condition, suggesting that SRE4BP (formally known as PETBP) may be mainly responsible for the sterol-mediated regulation of the apoE gene expression. Deletion analysis of the core binding site of SRE4BP by gel mobility shift assays showed that the minimal sequence of the SRE4BP binding appears to reside between -157 and -140, confirming the identity of SRE4 with the previously determined core sequence of URE1.

  • PDF

AMP-activated protein kinase 활성화 기전과 관련 약물의 효과 (Effects of AMP-activated Protein Kinase Activating Compounds and Its Mechanism)

  • 최형철
    • Journal of Yeungnam Medical Science
    • /
    • 제29권2호
    • /
    • pp.77-82
    • /
    • 2012
  • AMP-activated protein kinase (AMPK) is an important cellular fuel sensor. Its activation requires phosphorylation at Thr-172, which resides in the activation loop of the ${\alpha}1$ and ${\alpha}2$ subunits. Several AMPK upstream kinases are capable of phosphorylating AMPK at Thr-172, including LKB1 and CaMKK${\beta}$ ($Ca^{2+}$/calmodulin-dependent protein kinase kinase${\beta}$). AMPK has been implicated in the regulation of physiological signals, such as in the inhibition of cholesterol fatty acid, and protein synthesis, and enhancement of glucose uptake and blood flow. AMPK activation also exhibits several salutary effects on the vascular function and improves vascular abnormalities. AMPK is modulated by numerous hormones and cytokines that regulate the energy balance in the whole body. These hormone and cytokines include leptin, adiponectin, ghrelin, and even thyroid hormones. Moreover, AMPK is activated by several drugs and xenobiotics. Some of these are in being clinically used to treat type 2 diabetes (e.g., metformin and thiazolidinediones), hypertension (e.g., nifedipine and losartan), and impaired blood flow (e.g., aspirin, statins, and cilostazol). I reviewed the precise mechanisms of the AMPK activation pathway and AMPK-modulating drugs.

  • PDF

효소 고정화 방법에 따른 콜레스테롤 센서의 감도 특성 (The senstivity characteristics of cholesterol sensor by immobilization methods of the enzyme)

  • 송민정;윤동화;진준형;민남기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1935-1937
    • /
    • 2003
  • 최근 콜레스테롤 센서는 전극 상에 효소를 고정화 하는 방식을 이용하여 센서의 집적도를 높이는 시도가 이루어지고 있다. 이러한 전극 상의 효소고정화 방식으로 entrapment, cross liking, covalently binding 등이 있다. 본 논문에서는 이러한 효소 고정화 방식-전도성 고분자인 P3MT를 사용하여 entrap시키는 방법과 silanization을 이용한 covalent bonding 시키는 방법-에 따른 전기화학 센서의 감도 특성에 관한 연구를 수행하였다. 전도성 고분자를 사용한 고정화 방법은 cyclic voltammograms으로 scan rate 10 mA/s, potential 0.5-1.3V의 조건하에서 P3MT를 Polymerization하고, 효소 고정화를 위해 chromoampermeter로 potential 0.6V에서 900초 동안 수행하였다. silanization을 이용한 covalent bonding 시키는 방법은 nitric acid로 Pt 전극표면을 산화시키고, APTER로 silanization 공정을 시행하였다. 효소 고정화를 위해 전해질로는 0.1M Phosphate buffer solution을 사용하여 cyclic voltammograms으로 scan rate 50 mA/s 전위 0.0-0.7V의 조건 하에서 수행하였다. 이 결과 전도성 고분자를 이용한 고정화 방법에서의 senstivity가 0.89 ${\mu}A/mM{\cdot}cm^2$이고, silanization을 이용한 효소 고정화 방법에서는 1.51 ${\mu}A/mM{\cdot}cm^2$였다. 이처럼 후자의 방법에서 더 좋은 감도 특성이 나타났다. 따라서, silanization을 이용한 고정화 방법이 센서 제작 방식으로 더 적합하다고 사료된다.

  • PDF