• Title/Summary/Keyword: chloroplast content

Search Result 57, Processing Time 0.027 seconds

Changes of Chloroplast-Mediated Electron Transport Activity and Chlorophyll-Protein Complexes in Barley Seedlings by Decursinol (Decursinol 처리에 따른 보리 유식물의 전자전달 활성과 엽록소-단백질 복합체의 변화에 대하여)

  • 이현식
    • Journal of Plant Biology
    • /
    • v.31 no.2
    • /
    • pp.131-141
    • /
    • 1988
  • The effects of decursinol and decursin on chloroplast-mediated electron transport and phosphorylation in barley seedlings were investigated in comparison with coumarin in the dark or light. The changes of CP-complexes were also studied. Decursinol, decursin and coumarin caused marked inhibitory effects on germination of seed and electron transport and phosphorylation activity of seedlings. The following order of inhibitory effectiveness was exhibited; decursinol>coumarin>decursin. Loss of chlorophyll and decrease of electron transport activity were retarded in the dark, but were reversely accelerated in the light by these three chemicals. The changes of CP-complex patterns were also similar to effects on chlorophyll content and the electron transport activity. These opposite effect in the dark and light suggest that these three chemicals act as natural growth retardants rather than cytokinins or growth inhibitors.

  • PDF

Effects of Dimethipin on the Photosynthetic Electron Transport Activity of Isolated Barley Chloroplasts (보리 유식물 분리엽록체의 광합성 전자전달활성에 미치는 Dimethipin의 영향)

  • Lee Joon Sang
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.52-56
    • /
    • 2005
  • Eight days grown barley seedlings were treated with dimethipin for 72 hours and then the content of chlorophyll and photosynthetic electron activities of isolated chloroplasts were investigated. At the treatment of 10/sup -5/ M dimethipin the content of chlorophyll was decreased to 33% at 72 hours. Seven days etiolated barley seedlings were exposed to the light while dimethipin was added. At the time of 48 hours' greening chlorophyll content was reduced to 43% at 10/sup -4/M dimethipin and the chlorophyll a/b ratio was increased. In photosynthetic electron transport the activity of PSⅡ+PSⅠ was decreased to 10% at 48 hours and 25% at 72 hours at 10/sup -4/ M dimethipin. In the treatment of 10/sup -4/ M dimethipin the activity of PSⅡ+PSⅠ, except water splitting system was inhibited to 16% at 48 hours and 27% at 72 hours. The activity of PSⅡ was inhibited to 8% at 24 hours, 13% at 48 hours and 18% at 72 hours at 10/sup -4/ M dimethipin. The activity of PSⅠ was inhibited to 4% at 24 hours, 8% at 48 hours and 10% at 72 hours at 10/sup -4/ M dimethipin. In the times of greening of 7 days etiolated barley seedlings the activities of PSⅡ+PSⅠ were reduced to 5, 10, 10 and 11 % at 6, 12, 24, and 48 hours, respectively, at 10/sup -4/ M dimethipin. On the other hand, the activity of PSⅡ+PSⅠ except water splitting system, was not inhibited at all incubated hours in 10/sup -4/M dimethipin and there were no clear changes of the activities of PSⅡ and PSⅠ as compared to the control. Therefore, it could be concluded that dimethipin inhibited the photosynthetic electron activity by affecting the function of chloroplast rather than the synthesis of chloroplast and the inhibited function of chloroplast seems to come from the severe decrease of chlorophyll content.

The Effects of Acidic Electrolytic Water on the Development of Barley Chloroplast (산성 전해수가 보리(Hordeum vulgae L.) 엽록체의 발달에 미치는 영향)

  • 정화숙;송승달;노광수;송종석;박강은
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.255-261
    • /
    • 1999
  • To investigate the effects of strong acidic electrolytic water on the chloroplast, barley leaves were treated with strong acidic electrolytic water(pH 2.5). And to investigate the effects of weak acidic electrolytic water on the chloroplast development, etiolated barley leaves were treated with weak acidic electrolytic water(pH 6.5) during greening period. Chl contents, Fo, Fv, and Chl fluorescence quenching coefficient in barley leaves were measured during and after treatment of acidic electrolytic water. The following results were obtained. Chl a, b, and carotenoid were decreased with treatment of strong acidic electrolytic water. Chl contents were significantly decreased than that of the control after 5 min. These results provide evidence that the strong acidic electrolytic water dissimilate the Chl and so that the value of Fo was slightly increased. The strong acidic electrolytic water damaged PS II because Fo was increased and Fv, Fm, and Fv/Fm ratio were decreased. qP, qNP and qE were decreased. On the other hand qI was increased than that of the control. But Chl content and Chl fluorescence patterns were a little changed as the pH increase over 4.0 Chl a, b, and carotenoid were increased with treatment of weak acidic electrolytic water during greening period. Chl contents were significantly increased than that of control after 12 hours greening. These results provide evidence that the weak acidic electrolytic water accelerated the chlorophyll synthesis. And the weak acidic electrolytic water accelerated PS II development because Fv, Fm, qP and Fv/Fm ratio were increased than that of the control.

  • PDF

Complete chloroplast genome sequences of a major invasive species, Cenchrus longispinus, in Daecheong Island

  • Hyun, Jongyoung;Jung, Joonhyung;NamGung, Ju;Do, Hoang Dang Khoa;Kim, Joo-Hwan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.64-64
    • /
    • 2018
  • The genus Cenchrus (Poaceae), containing ca. 97 species, is distributed throughout Australia, Africa and Indian sub-continent and which was introduced to the United States and Mexico for use in improved pasture. In Korea, especially Daecheong Island, it is one of the most hazardous invasive plant, which causes serious environmental threats, biodiversity damages and physically negative impact on humans and animals. It can cause serious damage to farms, fields and white sand beaches. However, the chloroplast (cp) genome sequences and information of Cenchrus longispinus have been not addressed, so we provide the complete cp genome of Cenchrus longispinus using next-generation sequencing technology. The size of cp genomes of this Daecheong Island species (Cenchrus longispinus) is 137,144 bp, and it shows a typical quadripartite structure. Consisting of the large single copy (LSC; 80,223 bp), small single copy (SSC; 12,449 bp), separated by a pair of inverted repeats (IRs; 22,236 bp). This cp genome contains 75 unique genes, 4 rRNA coding genes, 33 tRNA coding genes and 21 duplicated in the IR regions, with the gene content and organization are similar to other Poaceae cp genomes. Our comparative analysis identified four cpDNA regions (rpl16, rbcL, ndhH and ndhF) from three Cenchrus species, two Setaria species and one Pennisetum species which may be useful for molecular identification.

  • PDF

Effects of Phytohromones on Biosynthesis of Phospholipids and Their Fatty Acid Compositions in Chlorella ellipsoidea Chloroplast (Chlorella ellipsoidea 엽록체의 인지질 생합성 및 지방산 조성에 미치는 식물호르몬의 효과)

  • 나형심
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.371-383
    • /
    • 1992
  • The effects of IAA $(10^{-3}M)\;an;GA_3\;(2{\times}10^{-8}\;M)$ on the biosynthesis of phospholipids and their fatty acid compositions in chloroplast isolated from Chlorella ellipsidea were analyzed. Growth ratio and the levels of total lipids and phospholipids in whole cell system and chloroplast treated with phytohormones were higher than those of control, and when treated with GAl. phosphatidylcholine content was predominantly higher than that of control. It was showed that in whole cell system the fatty acid utilized for biosynthesis of phopholipids was 27.43% for palmitic acid in control, while that was 20.25% for linolenic acid in treatment with 1M. In treatment with $GA_3$, 23.17% for linolenic acid was used in phospholipid formation. The major fatty acid in the chloroplst system was analyzed to be 35.67% for palmitic acid in control and in treatment with 1M, 24.91% for linolenic acid was used in phospholipid formation, while in treatment with $GA_3$, major fatty acid of phospholipids was 22.80% for linoleic acid.c acid.

  • PDF

The complete chloroplast genome sequence of Avena sterilis L. using Illumina sequencing

  • Raveendar, Sebastin;Lee, Gi-An;Lee, Kyung Jun;Shin, Myoung-Jae;Cho, Yang-Hee;Ma, Kyung-Ho;Chung, Jong-Wook;Lee, Jung-Ro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.139-139
    • /
    • 2017
  • The complete chloroplast genome sequence of Avena sterilis L., a dominant wild oat species in the family Poaceae, is first reported in this study. The complete cp genome sequence of A. sterilis is 135,887 bp in length with 38.5% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (21, 603 bp) separated by a small single-copy region (12,575 bp) and a large single-copy region (80,106). The A. sterilis cp genome encodes 111 unique genes, 76 of which are protein-coding genes, 4 rRNA genes, 30 tRNA genes and 18 duplicated genes in the inverted repeat region. Nine genes contain one or two introns. Pair-wise alignments of cp genome were performed for genome-wide comparison. This newly determined cp genome sequence of A. sterilis will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.

  • PDF

The chloroplast genome sequence of Viola kusanoana (큰졸방제비꽃(Viola kusanoana)의 엽록체 염기서열 분석)

  • Ah-reum Go;Ki-Oug Yoo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.22-22
    • /
    • 2021
  • 큰졸방제비꽃(Viola kusanoana)의 엽록체 DNA 염기서열을 밝히고자 차세대염기서열분석법(NGS)을 이용하여 분석하였다. 재료는 경상북도 울릉군 나리분지에 자생하는 개체의 잎을 사용하였다. 염기서열 분석결과, 총 길이는 158,644 bp 였고, GC함량은 36.3%로 분석되었다. 구간별로는 LSC (Large single copy)지역이 86,999 bp (GC content: 33.9%)였고 SSC (Small single copy)지역은 17,439 bp (GC content: 29.9%)으로 분석되었으며 IR (Invertied repeats)지역은 27,103 bp (GC content: 42.2%)로 확인되었다. 유전자는 protein coding gene 77개, tRNA gene 30개, rRNA 4개 등 총 111개로 이는 선행 연구된 제비꽃속 8개 분류군과 유전자의 순서와 방향이 모두 일치하였다. 이를 통해 제비꽃속의 엽록체 게놈의 유전자는 상당히 보존되어 있음을 확인하였다.

  • PDF

Regulation of Chlorophyll-Protein Complex Formation and Assembly in Wheat Thylakoid Membrane

  • Guseinova, I.M.;Suleimanov, S.Y.;Aliev, J.A.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.496-501
    • /
    • 2001
  • Lincomycin, an inhibitor of plastid protein synthesis, was found to block the synthesis of apoprotein P700 with a molecular mass of 72 kDa and the assembly of the Chl a-protein of PS I. Synthesis of the polypeptides of 48, 43.5, and 32 kDa of the PS II complex is also suppressed. This process is accompanied by the disappearance of the PS Two reaction center Chl a at 683 nm, and of the PS One reaction center Chl a at 690, 696, and 705 nm on the fourth derivative of the absorption spectra at 77K. Lincomycin does not affect the synthesis of LHC subunits. It increases the content of the two main Chl forms of LHC at 648 nm (Chl b) and 676 nm (Chl a). The low-temperature fluorescence ratio F736/F685 is also increased. However, the effect of cycloheximide (an inhibitor of cytoplasmic protein synthesis) leads to the reduction of polypeptides of the light-harvesting Chl a/b-protein complex in the range of 29.5-22 kDa. Under these conditions, the relative amount of Chl b and the F736/ F685 fluorescence ratio decrease significantly. This is obviously the result of blocking the LHC I and LHC II synthesis. At the same time rifampicin and actinomycin D (inhibitors which block transcription in chloroplast and nuclear genome, respectively) inessentially affect the characteristics of these complexes.

  • PDF

Characteristics of the complete plastid genome sequence of Lindera angustifolia (Lauraceae) in the geographically separated northern edge

  • GANTSETSEG, Amarsanaa;KIM, Jung-Hyun;HYUN, Chang Woo;HAN, Eun-Kyeong;LEE, Jung-Hyun
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.114-117
    • /
    • 2022
  • Lindera angustifolia is mainly distributed in the temperate climate zone of China but shows an extraordinary distribution, disjunctively isolated on the western coastal islands of Korea. We therefore present the complete chloroplast genome of Korean L. angustifolia. The complete plastome was 152,836 bp in length, with an overall GC content of 39.2%. A large single copy (93,726 bp) and a small single copy (18,946 bp) of the genome were separated by a pair of inverted repeats (20,082 bp). The genome consists of 125 genes, including 81 protein-coding, eight ribosomal RNA, and 36 transfer RNA genes. While five RNA editing genes (psbL, rpl2, ndhB×2, and ndhD) were identified in L. angustifolia from China, the "ndhD" gene was not recognized as an RNA editing site in the corresponding Korean individual. A phylogenetic analysis revealed that Korean L. angustifolia is most closely related to the Chinese L. angustifolia with strong bootstrap support, forming a sister group of L. glauca.

Changes in Photosynthetic Rate and Protein Content in the Leaf during the Senescence of Tobacco Plant (Nicotiana tabacum L) (담배의 노화과정 중 광합성 및 단백질 함량의 변화)

  • Lee, Sang-Gak;Shim, Sang-In;Kang, Byeung-Hoa
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 1995
  • This study was carried out to obtain the basic data which include the change of the photosynthetic rate and protein content according to growth stage in the process of senescence of tobacco plant The photosynthetic rate was the maximum with 26.31$\mu$mol.CO2/m2.sec and stomatal resistance was the minimum with 0.2552cm/sec at 15th days after leaf emergence. However, after 50 days the photosynthesis was very little occurred. During leaf developments the number of chloroplast was increased and reached at the maximum at 25th days after emergence of leaf, thereafter, it was decreased gradually. The content of protein increased continuously and showed the highest value at 15th days after leaf emergence. The degradation rate of soluble protein was more rapid than that of insoluble protein at early stage of senescence. The range of decrement in the insoluble protein was low at late stage of senescence. The content of Rubisco, the key enzyme of photoamthesis, corresponded to about 50% of soluble protein and reached to the maximum at 150 days after leaf emergence. As the senescence progressed, the content of large subunit(UV) of Rubisco showed a tendency to decrease more rapidly than that of small subunit(SSU). The total amount of amino acids was the highest at 15th days after leaf emergence.

  • PDF