• Title/Summary/Keyword: chlorophyll fluorescence

Search Result 295, Processing Time 0.028 seconds

A Simple Method for Testing Freezing Resistance Based on Chlorophyll Fluorescence in Tea (Camellia sinensis L.)

  • Chun, Jong-Un;Jeong, In-Ho;Choi, Hyoung-Kog
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.322-327
    • /
    • 2000
  • For the stable production of high quality tea, the freezing resistance is a very important character. Most of the farmers have planted out-pollinated seeds that are not genetically pure. So, with small sample, a quick and simple method is required to test freezing resistance of lots of germ-plasm and early generation of hybrids. The absorbances(A530 nm) of TTC reduction solution at -5$^{\circ}C$ were positively correlated with resistance to photoinhibition of PSII in 6 hour photoinhibitory treatments, being significantly fitted by simple linear regression ($R^2$=${0.64}^{**}$). Chlorophyll fluorescence measured by Fv/Fm was found to be very useful in evaluating the relative levels of freezing resistance in tea.

  • PDF

Nutrients and Particulate Organic Matter in Asan Bay (아산만의 영양염 및 입자성 유기물)

  • MOON Chang-Ho;PARK Chul;LEE Sung Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 1993
  • Seasonal distributions of nutrients and particulate organic matter were investigated in Asan Bay, Korea. Most of nutrients were high in August and low in February. The atomic ratios of inorganic nitrogen to phosphorous were close to Redfield ratio except in May when the ratio was 24.8. In May, nutrient concentrations except phosphorous decreased with salinity until $31.5{\sim}32.0%0$, but the concentrations increased again with salinity, impling that there were nutrient input sources within the estuary. Howerer, significant inverse relationships between nutrients and salinity in August suggest that nutrient sources were river discharge. Maximum chlorophyll a concentrations occurred in May. Relatively low ratios of $R_b$ to $R_a$($R_b$: fluorescence before acidification; $R_a$: fluorescence after acidification) during the study periods indicate that phytoplankton were not in good physiological condition. Relatively low ratio of particulate biogenic silica(PBSi) to particulate organic carbon(POC) and high ratios of PBSi and POC to chlorophyll a during the study periods suggest input of non-living detrital PBSi and POC from bottom in Asan Bay, where strong tidal mixing occurs.

  • PDF

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

The Effects of Sulfite on the Greening of Etiolated Barley (Mordeum vuigare L.) Seedling (Sulfite가 보리(Hordeum vulgare L.) 유식물의 녹화에 미치는 영향)

  • 박강은;정화숙
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 1998
  • To investigate the effects of sulfite on the chloroplast development, etiolated barley seedlings were treated with 100 mM sulfite solution every 3 hour by spraying during 96 hours greening Period. The effects were determined by chlorophyll a, b and carotenoids contents, photosynthetic electron transport activity, chlorophyll fluorescence yield and fluorescence quenching parameters. The contents of chlorophyll a and carotenoids were decreased than that of control by treatment of salfite over 48 hours greening. PS II Is more sensitive to sulfite than PS I Is. And by the addition of DPC to the chloroplasts of the barley seedling treated with sulfite, the photoreduction of DCPIP was not recovered. In greening with suite treated barley leaves, Fo, Fv and Nlh ratio were decreased with little difference from that of control. But qP, qNP and qR were lowed in comparison with those of controls whereas qE was markedly higher than that of control. Especially, It is Interesting that qR was decreased markedly compared to that of control. The results in the change of PS I activity, Nf and qP suggest that the strate of Inhibition by suite Is carbon dioxide reduction cycle.

  • PDF

In vivo Monitoring of the Incorporation of Chemicals into Cucumber end Rice Leaves by Chlorophyll Fluorescence Imaging

  • Kim, Jin-Hong;Jung, Ji-Eun;Lee, Choon-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 2002
  • Chlorophyll (Chl) fluorescence imaging was used to investigate the effectiveness of in vivo incorporation methods for two chemicals, 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) and methyl viologen (MV) in rice, a monocot, and cucumber, a dicot, leaves. four different methods (vacuum infiltration, floating, transpiration-aided incorporation through petiole and spraying) were compared, and $F_i$ and $F_v$/$F_m$ were chosen for the imaging of the DCMU- and MV-treated leaves, respectively. The effects of the chemicals in plants were generally heterogeneous over the whole leaf area. Moreover, the effectiveness of the treatment of a chemical in plant leaves was dependent on chemical species, plant species, concentration of the chemical, the treatment method, the duration of the treatment, the existence of light and detergent, etc. In conclusion, we suggest that to achieve the proposed effects of chemicals in plants for an actual experiment, these factors must be considered before the chemical treatment, and the best method for the treatment of the chemicals tested was floating and vacuum infiltration in the dicot and the monocot leaves, respectively, as drawn from Chl fluorescence imaging analysis.

The Fluorescence Study on the Chlorophyll Complexes of Silicon-Pyridine Polymers (III) (Chlorophyll과 Silicon-Pyridine 중합체의 착물에 대한 형광연구 (제3보))

  • Uoo-Tae Chung;Keun-Sul Lee;Kim Dae-Woong;Myon-Yong Park
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.304-309
    • /
    • 1982
  • The fluorescence yields of chl-a and-b complexes bound to silicon dimer, tetramer and hexamer containing pyridine group in diethyl ether solvent, were shown the transition of excited energy through silicon polymer chain, and the maximum energy quenching were appeared at 1 : 1 ratio of chl-a and pyridine group in silicon polymer but the chl-b complexes were shown the maximum energy of fluorescene emission at the same ratio.

  • PDF

Photosynthetic Characteristics of Polyvinylalcohol-Immobilized Spinach Chloroplasts (Polyvinylalcohol에 고정화한 시금치 엽록체의 광합성특성에 대한 연구)

  • 박인호
    • Journal of Plant Biology
    • /
    • v.34 no.3
    • /
    • pp.215-221
    • /
    • 1991
  • Photoxynthetic properties of polyvinylalcohol (PVA)-immobilized chloroplast especially regarded to stability of photosynthetic electron transport and the fluorescence induction pattern were studied. When isolated spinach chloroplasts were immobilized with PVA, it showed good preservation of photosynthetic electron transport activity, especially PS II activity, during storage at -15$^{\circ}C$, 4$^{\circ}C$ and 2$0^{\circ}C$. And immobilized chloroplasts revealed similar thermostability of whole chain electron transport to free chloroplsts. And the absorption peak of red band of chloroplasts showed the blue-shift of 2-4 nm after immobilization. Fv/Fm ratio of chlorophyll fluorescence slightly decreased after immobilization. White light pulse after continuous light do not induced the additional fluorescence rise. This means chlorophyll fluorescence at room temperature reached to Fmax under continuous light in the immobilized chloroplasts. It seems that PVA may be a good candidate for immobilization matrix for the preservation of photosynthetic function of thylakoids and for the continuous use of chloroplast membranes of higher plants for solar energy storage and conversion.

  • PDF

Sequestration of Orthophosphate by D(+)-Mannose Feeding Increases Nonphotochemical Quenchings in Chinese Cabbage Leaves (Mannose 처리된 배추 잎의 무기인산 감소에 따른 비광화학성 소산의 증가)

  • 박연일
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.303-309
    • /
    • 1991
  • Limitation of photosynthesis in detached Chinese cabbage (Brassica campestris L.) leaves was induced by feeding of mannose (25 mM) for 12 h in the light, and changes in the basic thylakoid functions under this condition were investigated. The acid soluble phosphate contend and CO2 uptake rate was decreased by 66% and 67%, respectively. However, the starch content was increased by 24% compared to those of controls. From the fast induction curves of chlorophyll fluorescence, dark level fluorescence (Fo) slightly increased while intermediate plateau fluorescence level (FI) to peak level fluorescence (Fp) transient was significantly decreased with a slight decrease in the Fo-to-FI transient. This data means that reduction of secondary electron acceptor of PSII (QB) might be more severely inhibited than that of primary electron acceptor of PSII (QA) by decrease in phosphate level. The strong decline of (Fv)m//Fm ratio suggests that efficiency of excitation energy capture by PSII was decreased markedly. The quenching of Fo (qO), an indicator of state transition, was also occurred over the slow induction kinetics of chlorophyll fluorescence. From quenching analysis, fluorescence was dominantly quenched by nonphotochemical quenchings (qE+qT). These results showed that the capture and transfer efficiency of excitation energy to PSII reaction center in thylakoid was decreased with the decline of leaf phosphate level, and that the state transition was occurred during the induction of photosynthesis under these conditions.

  • PDF