• 제목/요약/키워드: chlorophyll a/b binding proteins

검색결과 12건 처리시간 0.017초

고려인삼(Panax ginseng C.A, Meyer)의 잎 ESTs database에서 Energy 대사 관련 유전자 분석 (Gene Analysis Related Energy Metabolism of Leaf Expressed Sequence Tags Database of Korean Ginseng (Panax ginseng C.A. Meyer))

  • 이종일;윤재호;송원섭;이범수;인준교;김은정;양덕춘
    • 한국자원식물학회지
    • /
    • 제19권1호
    • /
    • pp.174-179
    • /
    • 2006
  • 본 연구에서는 인삼 잎으로부터 정제한 mRNA를 이용하여 cDNA library를 제작하였다. 이 cDNA library로 부터 349개의 에너지 대사 관련 유전자를 선발 하였다. 에너지 대사 관련 유전자의 평균 사이즈는 0.49 kb이며, 에너지 관련 유전자들의 세부 기능별 발현을 분석한 결과 aerobic respiration(48.4%), accessory proteins of electron transport and membrane associated energy conservation(17.2%), glycolysis and gluconeogenesis(3.4%), electron transport and membrane associated energy conservation(2.9%), respiration(2.0%), glycolysis methylglyoxal byp-ass(1.7%), metabolism of energy reserves(0.6%)와 alcohol fermentation(0.3%)의 분포를 보였다. 인삼 잎에서 발현되는 유전자중 가장 많이 발현된 Chlorophyll a/b binding protein of IhcII type I(36.6%), Photosystem II oxygen-evolving complex protein(6.6%) 등이 발현되었다.

Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants

  • Yoo, Sung-Je;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1124-1136
    • /
    • 2019
  • Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased $Ca^{2+}$ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.