• Title/Summary/Keyword: chlorine-hypochlorite solution

Search Result 22, Processing Time 0.028 seconds

The Leaching of Gold-silver from Refractory Gold Concentrate by Chlorine-hypochlorite Solution (염소-차아염소산 용액에 의한 저항성 금 정광으로부터 Gold-silver 용출)

  • Cho, Kang-Hee;Kim, Bong-Ju;Oh, Su-Ji;Choi, Seoung-Hwan;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.123-130
    • /
    • 2012
  • Leaching experiments of gold and silver from roasted concentrate were carried out using a chlorine-hypochlorite solution. The leaching rate of gold was 75% at 1.5:1 ratio of chlorine and hypochlorite and increased to 81% with adding 1 M NaCl. However, at 1% pulp density and at $65^{\circ}C$, the leaching rates of Au were close to 100%. XRD analysis identified quartz in the solid residues after digestion of roasted concentrate with aqua regia or chlorine-hypochloride leaching solution. This suggests that the gold may not be leached out of the quartz in aqua regia or chlorine-hypochlorite solution. In order to leach the gold from the quartz, the concentrate will have to be pre-treated through ultra-fine grinding or treated with stronger oxidative agents.

Effects of hypochlorite exposure on morphology and trace organic contaminant rejection by NF/RO membranes

  • Simon, Alexander;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.235-250
    • /
    • 2014
  • The impacts of membrane degradation due to chlorine attack on the rejection of inorganic salts and trace organic contaminants by nanofiltration (NF) and reverse osmosis (RO) membranes were investigated in this study. The rejection of trace contaminants was examined at environmentally relevant concentrations. Changes in the membrane surface morphology were observed as a result of chlorine exposure. A small increase in rejection was consistently observed with all four membranes selected in this study after being exposed to a low concentration of hypochlorite (100 ppm). In contrast, a higher concentration of hypochlorite (i.e., 2000 ppm) could be detrimental to the membrane separation capacity. Membranes with severe chlorine impact showed a considerable decrease in rejection over filtration time, possibly due to rearrangement of the polyamide chains under the influence of chlorine degradation and filtration pressure. The reported results indicate that loose NF membranes are more sensitive to chlorine exposure than RO membranes. The impact of hypochlorite exposure (both positive and negative) on rejection is dependent on the strength of the hypochlorite solution and is more significant for the neutral carbamazepine compound than the negatively charged sulfamethoxazole.

The Leaching and Recovery of Au from Scrap of PCBs (PCBs의 스크랩으로부터 Au 용출과 회수)

  • You, Don-Sang;Park, Cheon-Young
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • This study was carried out to find an environmental friendly and effective way to leach Au and Ag from scrap of Printed Circuit Boards (PCBs) using sodium-hypochlorite solution. In an EDS analysis, valuable metals such as Cu, Sn, Sb, Al, Ni, Pb and Au were all found in PCBs. The highest leaching rates obtained were 1% of pulp density with a chlorine:hypochlorite of 2:1 and a concentration of NaCl at 2M. The highest Au recovery was observed with the addition of sodium metabisulfite to make a 3M solution. It is confirmed that the leaching agent (chlorine-hypochlorite) could effectively leach Au and Ag from Printed Circuit Boards (scrap parts) and the additive reagent sodium metabisulfite could easily precipitate Au from the chlorine-hypochlorite solution.

A Consideration of Hydrazine Syntheses (Hydrazine 合成의 一考察)

  • Lee, Hac-Ki
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1961
  • It is important to study hydrazine because of the development of new uses for its derivatives. The Rasching method is the only satisfactory one for synthesizing hydrazine; it involves the oxidation of ammonia by sodium hypochlorite in the presence of some such catalyst as gelatin. Calcium hypochlorite was substituted for the sodium hypochlorite particularly in this work, applying agar-agar as catalyst. The results of the experiments are as follow: 1. The yield is proportional to the mole-ratio of ammonia to available chlorine in calcium hypochlorite and about 60% is obtained when the ratio is 20. 2. Agar-agar can be used as a catalyst and its proper concentration in the solution is 0.005%. 3. Proper concentration of available chlorine in the reaction solution is 0.23 mole/l. 4. The most effective condition for the reaction is a temperature of $60{\sim}65^{\circ}C.$ maintained for $20{\sim}25min$. 5. The reaction takes place equally well in either an open or closed container. 6. When calcium hypochlorite is applied in place of sodium hypochlorite, the yield of hydrazine is increased as much as 17%. 7. The yield of hydrazine is decreased by eliminating the suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite. 8. When $Ca(OH)_2$ is added to Rasching process, the yield of hydrazine is raised normally. 9. The fact that some metal ions, such as $Cu^{++},$ inhibit the formation of hydrazine was proved. 10. The suspension of $Ca(OH)_2$ acted as a remarkable adsorbent for $Cu^{++}$ like gelatin. The suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite acts as a catalyst, absorbing metal ions, to increase the yield of hydrazine. So I think that calcium hypochlorite is a more efficient oxidant than sodium hypochlorite in hydrazine syntheses.

  • PDF

Hypochlorite treatment of polyamide membrane for improved reverse osmosis performance

  • Shao, P.;Kurth, C.J.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.69-81
    • /
    • 2013
  • The pH-dependent inter-conversion of the three free chlorine species ($Cl_2$, HOCl, OCl-) present in the aqueous hypochlorite solution was theoretically investigated. Each species was found overwhelmingly present in a characteristic pH range. Hypochlorite treatment of the polyamide membrane was carried out over these pH ranges and various membrane responses were observed. As pH is less than 8, membrane tends to be N-chlorinated by $Cl_2$ and HOCl, and N-chlorinated membrane showed reduced water permeance and salt rejection. As pH rises to 10-12, $OCl^-$ appears to be the dominating chlorine species. Membrane hydrolysis was found to well interpret the improved water permeance and salt rejection. When the pH is between 8-10, both N-chlorination and hydrolysis contribute to the response of the membrane, and the treated membrane showed improved salt rejection but reduced water permeation. Excessive hydrolysis occurred while the membrane was treated at pH 13 for the much stronger alkalinity.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

The Effects of Chlorination on the Friction Properties of SBR (염소화 반응조건이 SBR의 표면마찰 특성에 미치는 영향)

  • Park, Cha-Cheol;Kim, Ho-Jung
    • Fashion & Textile Research Journal
    • /
    • v.10 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • This study was concerned with the influence of reaction conditions on the surface friction properties of Syrene-Butadiene Rubber(SBR) sheet when it was chlorinated by chemical treatment method using the sodium hypochlorite and sulfuric acid. The results of this study were as follows. SEM photographs of chlorinated SBR surface showed uneven etching caused by the chlorination. In the FTIR spectra, the intensity of C=C peak of SBR was decreased with increasing the concentration of sodium hypochlorite. Otherwise there was no trace of C=C peak in spectrum of SBR treated with 5 wt% NaOCl with pH 0.1 for 90 seconds. EDX spectra showed that relative content of chlorine of SBR was increased with increasing the amount of sodium hypochlorite, and also affected with pH condition of acid solution. Friction angle and friction coefficient of SBR were influenced with concentration of sodium hypochlorite, but were not with pH condition of acid solution.

Effect of Mixed Oxidants and Sodium Hypochlorite on Pathogenic Microorganisms in Olive flounder Paralichthys olivaceus Aquaculture on Jeju Island (제주도 양식 넙치(Paralichthys olivaceus)에서 분리한 병원균 3종에 대한 Mixed Oxidant 및 차아염소산나트륨 살균효과)

  • Park, Cheonman;Kim, Ki-hyuk;Moon, Hye-na;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • Marine pathogenic bacteria, such as Streptococcus parauberis, Edwardsiella tarda and Vibrio harveyi, can cause lethal infections in farmed fish, ozone and antibiotics, are employed to sterilize waters used for rearing fish to mitigate this threat. The most widely used method is treatment with sodium hypochlorite solution. However, the maintenance of a constant concentration of chlorine in rearing waters can be difficult. We investigated the potential of a mixed oxidant (MO) solution generated by electrolysis of sea water to improve water quality. We measured the survival rates of fish pathogenic bacteria exposed to different concentrations of MO (0.5, 1.0, 1.5 and 2.0 MO) and sodium hypochlorite (0.5, 1.0, 1.5 and 2.0 ppm) for various lengths of time (0, 5, 10, 15, 20, 25 and 30 min). We found a time-dependent decrease in the survival rates of the tested pathogenic microorganisms. The sterilization effect of the MO solution on pathogenic organisms was greater than that of sodium hypochlorite for gram-negative and gram-positive bacteria. We conclude that MO solution produced by electrolysis could be used to maintain a constant chlorine concentration in aquaculture systems.

Mineralogical Phase Transform of Salt-roasted Concentrate and Enhancement of Gold Leaching by Chlorine-hypochlorite Solution (소금-소성정광에 대한 광물학적 상변화와 염소-차아염소산 용액을 이용한 금 용출 향상)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;Choi, Seoung-Hwan;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • In order to optimize the gold leaching process from refractory sulfide concentrate, a chlorine-hypochlorite solution with varying concentrations and temperatures were applied to salt-roasted concentrate. The concentrate consisted of pyrite, chalcopyrite, and galena, which were turned into hematite through air-roasting at $750^{\circ}C$. Also these concentrates were changed into hematite and nantokite (CuCl)) through salt (NaCl)-roasting at $750^{\circ}C$. The results of the gold leaching experiments showed that the best gold leaching parameters were obtained when the hydrochloric acid-sodium hypochlorite mix was at a ratio of 1 : 2, the added concentration was 1.0 M concentration, the pulp density was 1.0%, and the leaching was done at a $60^{\circ}C$ leaching temperature. The leaching rate for gold was much greater in the roasted concentrate than in the raw concentrate. The leaching rate was greater in the salt-roasted concentrate than in the plain roasted concentrate too. From XRD analysis, quartz was found in the salt-roasted concentrate and in the solid residue from the chlorine-hypochlorite leaching solution at $60^{\circ}C$.

A Study on Control Disinfection By-products in High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 소독부산물 제어에 관한 연구)

  • Cho, Haejin;Shin, Hyunsoo;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2017
  • Sodium hypochlorite used in water disinfection processes is generally in the production of chlorine to 0.8%. As the dose of chlorine increases, disinfection by-products (Chlorate) also increase simultaneously and exceed water quality standards. In this study, the electrolytic cell of a sodium hypochlorite generator (12% chlorine) was adjusted to control the production of the disinfection by-products. As a result, it was possible to reduce Chlorate concentrations by more than 95% by adjusting the pH of the electrolytic cell from 1.53 to 4.2 (normal pH of the electrolytic cell). As a low current is required to obtain these results, a 15% improvement in the efficiency of the positive electrode is also observed. For the development of High Sodium Hypochlorite Generation can be used in a safe sodium hypochlorite solution, which is expected to contribute to improvement in the safety of the disinfection process.