Browse > Article
http://dx.doi.org/10.12989/mwt.2014.5.4.235

Effects of hypochlorite exposure on morphology and trace organic contaminant rejection by NF/RO membranes  

Simon, Alexander (School of Civil Mining and Environmental Engineering, The University of Wollongong)
Nghiem, Long D. (School of Civil Mining and Environmental Engineering, The University of Wollongong)
Publication Information
Membrane and Water Treatment / v.5, no.4, 2014 , pp. 235-250 More about this Journal
Abstract
The impacts of membrane degradation due to chlorine attack on the rejection of inorganic salts and trace organic contaminants by nanofiltration (NF) and reverse osmosis (RO) membranes were investigated in this study. The rejection of trace contaminants was examined at environmentally relevant concentrations. Changes in the membrane surface morphology were observed as a result of chlorine exposure. A small increase in rejection was consistently observed with all four membranes selected in this study after being exposed to a low concentration of hypochlorite (100 ppm). In contrast, a higher concentration of hypochlorite (i.e., 2000 ppm) could be detrimental to the membrane separation capacity. Membranes with severe chlorine impact showed a considerable decrease in rejection over filtration time, possibly due to rearrangement of the polyamide chains under the influence of chlorine degradation and filtration pressure. The reported results indicate that loose NF membranes are more sensitive to chlorine exposure than RO membranes. The impact of hypochlorite exposure (both positive and negative) on rejection is dependent on the strength of the hypochlorite solution and is more significant for the neutral carbamazepine compound than the negatively charged sulfamethoxazole.
Keywords
nanofiltration; reverse osmosis; water recycling; hypochlorite; membrane degradation; trace organic contaminants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wilf, M. and Alt, S. (2000), "Application of low fouling RO membrane elements for reclamation of municipal wastewater", Desalination, 132(1-3), 11-19.   DOI   ScienceOn
2 Wintgens, T., Melin, T., Schafer, A., Khan, S., Muston, M., Bixio, D. and Thoeye, C. (2005), "The role of membrane processes in municipal wastewater reclamation and reuse", Desalination, 178(1-3), 1-11.   DOI
3 Xu, P., Drewes, J.E., Kim, T.-U., Bellona, C. and Amy, G. (2006), "Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications", J. Membr. Sci., 279(1-2), 165-175.   DOI   ScienceOn
4 Agenson, K.O. and Urase, T. (2007), "Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications", Sep. Purif. Technol., 55(2), 147-156.   DOI   ScienceOn
5 Antony, A., Fudianto, R., Cox, S. and Leslie, G. (2010), "Assessing the oxidative degradation of polyamide reverse osmosis membrane-Accelerated ageing with hypochlorite exposure", J. Membr. Sci., 347(1-2), 159-164.   DOI
6 Bartels, C.R., Wilf, M., Andes, K. and Iong, J. (2005), "Design considerations for wastewater treatment by reverse osmosis", Water Sci. Technol., 51(6-7), 473-482.
7 Bellona, C. and Drewes, J.E. (2005), "The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes", J. Membr. Sci., 249(1-2), 227-234.   DOI
8 Bui, N.-N., Lind, M.L., Hoek, E.M.V. and McCutcheon, J.R. (2011), "Electrospun nanofiber supported thin film composite membranes for engineered osmosis", J. Membr. Sci., 385-386, 10-19.   DOI   ScienceOn
9 Bellona, C., Drewes, J.E., Xu, P. and Amy, G. (2004), "Factors affecting the rejection of organic solutes during NF/RO treatment-A literature review", Water Res., 38(12), 2795-2809.   DOI   ScienceOn
10 Buch, P.R., Jagan Mohan, D. and Reddy, A.V.R. (2008), "Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes", J. Membr. Sci., 309(1-2), 36-44.   DOI
11 Chang, K.-S., Huang, Y.-H., Lee, K.-R. and Tung, K.-L. (2010), "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci., 354(1-2), 93-100.   DOI   ScienceOn
12 da Silva, M.K., Tessaro, I.C. and Wada, K. (2006), "Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions", J. Membr. Sci., 282(1-2), 375-382.   DOI
13 Freger, V., Gilron, J. and Belfer, S. (2002), "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209(1), 283-292.   DOI   ScienceOn
14 Fujioka, T., Khan, S.J., Poussade, Y., Drewes, J.E. and Nghiem, L.D. (2012), "N-nitrosamine removal by reverse osmosis for indirect potable water reuse-A critical review based on observations from laboratory-, pilot-and full-scale studies", Sep. Purif. Technol., 98, 503-515.   DOI
15 Glater, J., Hong, S.K. and Elimelech, M. (1994), "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95(3), 325-345.   DOI   ScienceOn
16 Kwon, Y.N., Tang, C.Y. and Leckie, J.O. (2008), "Change of chemical composition and hydrogen bonding behavior due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 108(4), 2061-2066.   DOI   ScienceOn
17 Kang, G.D., Gao, C.J., Chen, W.D., Jie, X.M., Cao, Y.M. and Yuan, Q. (2007), "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane", J. Membr. Sci., 300(1-2), 165-171.   DOI   ScienceOn
18 Kwon, Y.N. and Leckie, J.O. (2006), "Hypochlorite degradation of crosslinked polyamide membranes I.Changes in chemical/morphological properties", J. Membr. Sci., 283(1-2), 21-26.   DOI   ScienceOn
19 Kwon, Y.N., Tang, C.Y. and Leckie, J.O. (2006), "Change of membrane performance due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 102(6), 5895-5902.   DOI   ScienceOn
20 Lopez-Munoz, M.J., Sotto, A., Arsuaga, J.M. and Van der Bruggen, B. (2009), "Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes", Sep. Purif. Technol., 66(1), 194-201.   DOI
21 Nghiem, L.D.and Coleman, P.J. (2008), "NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling", Sep. Purif. Technol., 62(3), 709-716.   DOI
22 Nghiem, L.D., Schafer, A.I. and Elimelech, M. (2004), "Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms", Environ. Sci. Technol., 38(6), 1888-1896.   DOI   ScienceOn
23 Nghiem, L.D., Schafer, A.I. and Elimelech, M. (2005), "Pharmaceutical retention mechanisms by nanofiltration membranes", Environ. Sci. Technol., 39(19), 7698-7705.   DOI
24 Semiao, A.J.C. and Schafer, A.I. (2013), "Removal of adsorbing estrogenic micropollutants by nanofiltration membranes.Part A-Experimental evidence", J. Membr. Sci., 431, 244-256.   DOI   ScienceOn
25 Nghiem, L.D., Schafer, A.I. and Elimelech, M. (2006), "Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane", J. Membr. Sci., 286(1-2), 52-59.   DOI
26 Nghiem, L.D., Espendiller, C. and Braun, G. (2008a), "Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes", Water Sci. Technol., 58(1), 163-169.   DOI
27 Nghiem, L.D., Vogel, D. and Khan, S. (2008b), "Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator", Water Res., 42(15), 4049-4058.   DOI
28 Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301-310.   DOI   ScienceOn
29 Simon, A., Nghiem, L.D., Le-Clech, P., Khan, S.J. and Drewes, J.E. (2009), "Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes", J. Membr. Sci., 340(1-2), 16-25.   DOI
30 Simon, A., Price, W.E. and Nghiem, L.D. (2013), "Impact of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs):The role of cleaning temperature", J. Taiwan Inst. Chem. E., 44(5), 713-723.   DOI
31 Urase, T. and Sato, K. (2007), "The effect of deterioration of nanofiltration membrane on retention of pharmaceuticals", Desalination, 202(1-3), 385-391.   DOI
32 Soice, N.P., Maladono, A.C., Takigawa, D.Y., Norman, A.D., Krantz, W.B. and Greenberg, A.R. (2003), "Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes", J. Appl. Polym. Sci., 90(5), 1173-1184.   DOI   ScienceOn
33 Soice, N.P., Greenberg, A.R., Krantz, W.B. and Norman, A.D. (2004), "Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis", J. Membr. Sci., 243(1-2), 345-355.   DOI   ScienceOn
34 Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I.FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242(1-3), 149-167.   DOI   ScienceOn
35 Van der Bruggen, B., Verliefde, A., Braeken, L., Cornelissen, E.R., Moons, K., Verberk, J., van Dijk, H.J.C. and Amy, G. (2006), "Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration", J. Chem. Technol. Biotechnol., 81(7), 1166-1176.   DOI
36 Van der Bruggen, B., Manttari, M. and Nystrom, M. (2008), "Drawbacks of applying nanofiltration and how to avoid them: A review", Sep. Purif. Technol., 63(2), 251-263.   DOI
37 Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Petrinic, I., Luxbacher, T., Amy, G.L., Van der Bruggen, B. and van Dijk, J.C. (2009), "Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes", J. Membr. Sci., 330(1-2), 90-103.   DOI