• Title/Summary/Keyword: chlorine water disinfection

Search Result 151, Processing Time 0.025 seconds

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.

Most suitable design method of post-chlorination process in portable water process by using CFD (전산유체를 활용한 정수공정에서 후염소 투입공정 최적설계 방안)

  • Cho, Youngman
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Post-chlorination for disinfection in portable water process is final process. The design factors of post-chlorination are inflow pipe line from tank of filtrated water to cleanwell, injection point of chlorine, appropriate shape of baffle in cleanwell for disinfection efficient improvement. Until now, we did not have the design standard for post-chlorination. we evaluated most suitable design method of post-chlorination process in portable water process by using computational fluid dynamics in this research. We found the result that the pipe to connect the cleanwell should be one. If pipe line split into two or more, uniform distribution of the flow is difficult. Second, optimal injection point of chlorine is the middle of pipe line to connect the cleanwell. Therefore, it is not economical to install chlorine contact basin in cleanwell. Third, the shape of baffle should be designed in order to water flows in one direction. And we found that it is better to design the low number of flow turning.

Formation Characteristics of Disinfection By-Products using Chlorine Disinfection in Sewage Effluent (하수 염소 소독시 소독부산물 발생 특성)

  • Beck, Young-Seog;Song, Min-Hyung;Jung, Kyung-Hun;Kwon, Dong-Sik;Lee, Gi-Gong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.275-280
    • /
    • 2004
  • This study was performed to investigate the disinfection efficiency and the formation characteristics of disinfection by-products(DBPs) by chlorination in the sewage effluent. The effluent was sampled from the sewage treatment plants operated in the activated sludge process and the advanced sewage process. The type of DBPs investigated were Trihalomethanes(THMs), Dichloroacetonitrile(DCAN), Chloral hydrate(CH), Dichloroacetic acid(DCAA), Trichloroacetic acid(TCAA). Major findings are as follows. First, the optimum injection concentration for chlorination in sewage effluent were found to be in the range $0.5{\sim}1.0mg\;cl_2/L$. Also, It was found that the chlorine dosage in the effluent of activated sludge process was higher than in the effluent of advanced sewage process. Second, the maximum formation concentration of THMs were $12.7{\mu}g/L$. The THMs formation reaction was finished in a short time of several seconds and chloroform was mainly formed. Also, it was found that the concentration of ammonium nitrogen is higher, the concentration of THMs is lower. Third, it was found that DCAA and TCAA were mainly formed as DBPs by disinfection.

A Study on Control Disinfection By-products in High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 소독부산물 제어에 관한 연구)

  • Cho, Haejin;Shin, Hyunsoo;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2017
  • Sodium hypochlorite used in water disinfection processes is generally in the production of chlorine to 0.8%. As the dose of chlorine increases, disinfection by-products (Chlorate) also increase simultaneously and exceed water quality standards. In this study, the electrolytic cell of a sodium hypochlorite generator (12% chlorine) was adjusted to control the production of the disinfection by-products. As a result, it was possible to reduce Chlorate concentrations by more than 95% by adjusting the pH of the electrolytic cell from 1.53 to 4.2 (normal pH of the electrolytic cell). As a low current is required to obtain these results, a 15% improvement in the efficiency of the positive electrode is also observed. For the development of High Sodium Hypochlorite Generation can be used in a safe sodium hypochlorite solution, which is expected to contribute to improvement in the safety of the disinfection process.

The Study for the Long-Term Rainwater Storage Quality Effect after Chlorination (염소 소독에 의한 저장빗물수질 유지효과 연구)

  • Park, Heesoo;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • The purpose of this study is to monitor the rainwater flowing from the roof of buildings and to maximize the effectiveness of the rainwater storage. This study also analyses the changes in rainwater characteristics before and after subsequent chlorination disinfection. The stored rainwater was disinfected by chlorine and then analyzed for COD, TN, TP, enteric bacteria, and general microbial population changes over time. There was an observed 99% reduction of enteric bacteria and common microbes within two weeks after chlorine injection. Thus, chlorine disinfection of rainwater improves water quality for long-term storage and future use.

A Study on the Microbiological Quality of Vegetables in Relation to the Sanitization Method Used and Vegetable Types (채소군별 미생물학적 안전성 확보를 위한 적정 소독방법)

  • Kim, Heh-Young;Lee, Yun-Hee
    • Korean journal of food and cookery science
    • /
    • v.25 no.5
    • /
    • pp.632-642
    • /
    • 2009
  • In this study the microbiological quality of vegetables was evaluated in relation to the sanitization methods used and vegetable types which consisted of raw food ingredients used in foodservice operations. We analyzed the microbial quantities on lettuce and spinach, which were used as leaf vegetables and cucumber and tomato, which were used as fruit vegetables according to various disinfection methods using different chlorine concentration(50 ppm, 100 ppm, 200 ppm) and exposure time(5 min, 10 min) over 5 days. When the effects of the disinfection methods on microbial qualities and sensory evaluation were analyzed, the following results were obtained. First, in the leaf vegetables, disinfection with a chlorine concentration of 200 ppm for a 5 minutes exposure time was needed to control microbial growth. Second, fruit vegetables sterilized with tap water had reduced microbial qualities after an extended amount of time relative to chlorine disinfection, that is, disinfection with a chlorine concentration of 50 ppm for 5 minutes exposure time was desirable.

A Study of Potable Water Disinfection for National Health (수돗물 살균제가 국민보건에 미치는 영향에 관한 연구)

  • Shin Soo Ok
    • Journal of Korean Public Health Nursing
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 1996
  • Disinfection is a very important process in water plant on account of our surface water usage. Particularly. the rainfall of Korea is concentrated in summer time. it is almost carried away to ocean before our utilization as water resource. To overcome the unbalance of water resource, artificial dams and reservoirs are constructed. According to such storage of water to aggravate water pollution and make the increase of water cleaning chemicals. Chlorine, as a main traditional chemical for water treatment. is focused on account of THMS formation in recent days. In this paper. the data of a water plant located in Seoul is adopted as the foundation of water quality analysis and introduce the substitute chemicals to supplement the harmful formation. additionally. Conclusions are summarized as follows: 1. The water quality of water resource is the worst in summer time and the supply of cleaning chemical is inevitably increased on account of general bacteria increase. 2. Chlorine, as a main chemical for water cleaning, formed the cancer-causing organic THMS with water molecules. 3. One of substitute chemical. chlorine dioxids suppress the formation of THMS comparing with the case of chlorine only. Therefore. the continuous research of substitute chemicals should be activated. 4. As the supply of disinfected clean water concerned with the citizen sanitary, the cultivation of professionals and academic conference must be needed on the basis of nation

  • PDF

Study on Water Treatment Improvement Measures based on Case Studies of Ozone Disinfection at Domestic Water Treatment Plants (국내 정수장의 오존 소독능 평가사례를 통한 정수처리기준 개선방안 연구)

  • Noh, Hee-Su;Lee, Kyung-Hyuk;Wang, Chang-Keun;Son, Dae-Ik;Kang, Joon-Wun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • Ozone process is currently applied in 24 water treatment plants in Korea to control micropollutants and taste & odor compounds. However, one of the chlorine resistant protozoa, cryptosporidium, is not being considered as ozone disinfection performance whereas U.S. is already regulate Cryptosporidium by ozone disinfection. two ozone plants(PH, UH WTP) operation conditions are investigated for disinfection performance comparing Korea disinfection regulation and U.S. regulation. The ozone plants are unable to get Cryptosporidium inactivation credits by Korea disinfection regulation. However, the inactivation credit for Cryptosporidum was increased when the U.S. disinfection regulation was applied. The Korea disinfection credit regulation need revision to practical aspects.

Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes

  • Jeong, Dawoon;Lee, Chang-Ha;Lee, Seockheon;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.395-404
    • /
    • 2019
  • The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with $0.2mg-Cl_2/L$ chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg $Cl_2/L$). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.

Reflection on Kinetic Models to the Chlorine Disinfection for Drinking Water Production

  • Lee, Yoon-Jin;Nam, Sang-ho
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.119-124
    • /
    • 2002
  • Experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform used as a general indicator organism based on the chlorine residuals as a disinfectant. The water samples were taken from the outlet of a settling basin in a conventional surface water treat- ment system that is provided with the raw water drawn from the mid-stream of the Han River, The inactivation of total coliform was experimentally analysed for the dose of disinfectants contact time, filtration and mixing intensity. The curves obtained from a series of batch processes were shaped with a general tailing-off and biphasic mode of inactivation, i.e. a sharp loss of bacterial viability within 15 min followed by an extended phase. In order to observe the effect of carry-over suspended solids on chlorine consumption and disinfection efficiency, the water samples were filtered, prior to inoculation with coliforms, with membranes of both 2.5$\mu$m and 11.0 $\mu$m pore size, and with a sand tilter of 1.0 mm in effective size and of 1.4 in uniformity coefficient. As far as the disinfection efficiency is concerned, there were no significant differences. The parameters estimated by the models of Chick-Wat-son, Hom and Selleck from our experimental data obtained within 120 min are: log(N/N$\_$0/)=-0.16CT with n=1, leg(N/N$\_$0/)=-0.71C$\^$0.87/ with n 1 for the Chick-Watson model, log (N/N$\_$0/)=-1.87C$\^$0.47/ T$\^$0.36/ for the Hom model, log (MHo)=-2.13log (1+CT/0.11) for the Selleck model. It is notable that among the models reviewed with regard to the experimental data obtained, the Selleck model appeared to most closely resemble the total coliform survival curve.