• 제목/요약/키워드: chloride solutions

검색결과 380건 처리시간 0.027초

12Cr 합금강의 부식특성 및 인공열화된 12Cr합금강의 피로특성 (Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel)

  • 조선영;김철한;배동호
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.965-971
    • /
    • 2001
  • To estimate the reliability of 12Cr alloy steel, the material of turbine blade in the steam power plant, Its corrosion susceptibility and fatigue characteristics in NaCl and Na$_2$SO$_4$solution with the difference of concentration and temperature was investigated. The polarization tests recommended in ASTM G5 standard for corrosion susceptibility in the various corrosive solutions was estimated. It showed that the higher temperature, the faster corrosion rates and corrosion rates were the fastest in 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution. From these results, the degradation conditions were determined in distilled water, 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution at room temperature, 60$\^{C}$ and 90$\^{C}$ during 3, 6 and 9 months. Its surface had a few pits for long duration. But, it was not susceptible in sulfide and chloride condition of several temperatures. If the degraded 12Cr alloy steel and non-degraded one were compared with fatigue characteristics, Any differences were not found regardless of temperature and degradation period.

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S.;El Ghoul, Jaber;El Mir, Lassaad
    • Membrane and Water Treatment
    • /
    • 제6권4호
    • /
    • pp.309-321
    • /
    • 2015
  • We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

연속식 결정화기에서 온도와 교반속도에 의한 탄산칼슘 결정의 형상변화 (Phase Changes of Calcium Carbonate by Temperature and RPM in Continuous Crystallizer)

  • 신윤정;한현각
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.666-671
    • /
    • 2019
  • 탄산칼슘은 칼사이트, 바테라이트, 아라고나이트 3개의 상이 있다. 칼사이트와 아라고나이트는 열역학적으로는 바테라이트 보다 안정하다. 연속식결정화기에서 탄산나트륨과 염화칼슘 용액반응으로 아라고나이트 결정 제조공정에서 온도와 혼합속도 영향에 대하여 연구하였다. 회분식결정화기에서 칼사이트는 상대적으로 낮은 온도($40^{\circ}C$ 아래)에서 생성되지만, 아라고나이트는 높은 온도에서 발견된다. 혼합속도가 100 rpm인 연속식결정화기에서, 아라고나이트는 어떤 반응온도에서도 발견할 수 없었다. 그러나 혼합속도가 300 rpm, 500 rpm으로 증가하면, 칼사이트와 아라고나이트의 비는 온도가 증가하면서 증가하였다.

Comparison of the trometamol-balanced solution with two other crystalloid solutions for fluid resuscitation of a rat hemorrhagic model

  • Ting, Wen-Ting;Chang, Ru-Wen;Wang, Chih-Hsien;Chen, Yih-Sharng;Lee, Jih-Jong
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.6.1-6.12
    • /
    • 2020
  • Currently, the optimal resuscitation fluid remains debatable. Therefore, in the present study, we designed a trometamol-balanced solution (TBS) for use as a resuscitation fluid for hemorrhagic shock. Hemorrhagic shock was induced in 18 male Wistar-Kyoto rats, which were assigned to normal saline (NS), Ringer's solution (RS), and TBS groups. During the hemorrhagic state, their hemodynamic parameters were recorded using an Abbott i-STAT analyzer with the CG4+ cartridge (for pH, pressure of carbon dioxide, pressure of oxygen, total carbon dioxide, bicarbonate, base excess, oxygen saturation, and lactate), the CG6+ cartridge (for sodium, potassium, chloride, blood glucose, blood urea nitrogen, hematocrit, and hemoglobin), and enzyme-linked immunosorbent assay kits (calcium, magnesium, creatinine, aspartate aminotransferase, alanine aminotransferase, bilirubin, and albumin). Similar trends were found for the parameters of biochemistries, electrolytes, and blood gas, and they revealed no significant changes after blood withdrawal-induced hemorrhagic shock. However, the TBS group showed more effective ability to correct metabolic acidosis than the NS and RS groups. TBS was a feasible and safe resuscitation solution in this study and may be an alternative to NS and RS for resuscitation in hemorrhagic shock patients without liver damage.

Sorption of Pb and Cu on different types of microplastics

  • Ruri, Lee;Eun Hea, Jho;Jinsung, An
    • Membrane and Water Treatment
    • /
    • 제14권1호
    • /
    • pp.19-25
    • /
    • 2023
  • The studies on the effect of different plastic properties (e.g., types, shapes, presence of additivies) on the sorption of contaminants in the agricultural environment are limited. In this study, Cu and Pb, the commonly found heavy metals in the environment, were used to investigate the sorption capacities of microplastics (MPs). The Pb sorption capacity increased in the order of polystyrene (PS)<polyethylene (PE)<polyvinyl chloride (PVC). The estimated Cu sorption capacity was greater for the PE films than the PE fragments, while the sorption strength was greater for the PE fragments. This suggests that the shapes of MPs can affect the contaminant sorption capacities. With the PE fragments, the Pb sorption capacity was greater than the Cu sorption capacity by 10-12 times. Also, the Pb and Cu sorption capacities were greater for the PE fragments with additives than the PE fragment without additives. After the sorption of Pb or Cu on MPs, the toxic effects of the Pb or Cu solutions were decreased, suggesting that the toxic effects of contaminants can be affected by the co-presence of MPs in the environment. Overall, the results show that different types and shapes of MPs and the presence of additives can affect the heavy metal sorption capacities of MPs.

Assessment and Correlation of Saline Soil Characteristics using Electrical Resistivity

  • Mustapha Maliki;Fatima Zohra Hadjadj;Nadia Laredj;Hanifi Missoum
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.205-214
    • /
    • 2023
  • Soil salinity is becoming one of the most devastating environmental hazards over the years. Soil investigation involves fast, low cost and non disturbing methods to measure soil characteristics for both construction projects as well as for agricultural use. The electrical resistivity of saline soils is greatly governed by salt concentration and the presence of moisture in soil matrix. Experimental results of this investigation highlight that there is a significant relationship between the electrical resistivity of soil samples mixed with chloride solutions (NaCl, KCl, and MgCl2) at various concentrations, and soil physical properties. Correlations represented by quadratic functions were obtained between electrical resistivity and soil characteristics, namely, water content, degree of saturation and salt concentration. This research reveals that the obtained correlations between electrical resistivity, salt concentration, water content and degree of saturation are effective for predicting the characteristics of salt affected soils in practice, which constitute a governing element in the assessment of saline lands sustaining infrastructure.

Effect of microbial biopolymers on the sedimentation behavior of kaolinite

  • Yeong-Man Kwon;Seok-Jun Kang;Gye-Chun Cho;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.121-131
    • /
    • 2023
  • Clay sedimentation has been widely analyzed for its application in a variety of geotechnical constructions such as mine tailing, artificial islands, dredging, and reclamation. Chemical flocculants such as aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), and ferric sulfate (Fe(SO4)3), have been adopted to accelerate the settling behaviors of clays. As an alternative clay flocculant with natural origin, this study investigated the settling of xanthan gum-treated kaolinite suspension in deionized water. The sedimentation of kaolinite in solutions of xanthan gum biopolymer (0%, 0.1%, 0.5%, 1.0%, and 2.0% in a clay mass) was measured until the sediment height was stabilized. Kaolinite was aggregated by xanthan gum via a direct electrical interaction between the negatively charged xanthan gum molecules and positively charged edge surface and via hydrogen bonding with kaolinite particles. The results revealed that the xanthan gum initially bound kaolinite aggregates, thereby forming larger floc sizes. Owing to their greater floc size, the aggregated kaolinite flocs induced by xanthan gum settled faster than the untreated kaolinite. Additionally, X-ray computed tomography images collected at various depths from the bottom demonstrated that the xanthan gum-induced aggregation resulted in denser sediment deposition. The findings of this study could inspire further efforts to accelerate the settling of kaolinite clays by adding xanthan gum.

Desalination performance of Al2O3 positively charged nanofiltration composite membrane

  • Li, Lian;Zhang, Xiating;Li, Lufen;Yang, Zhongcao;Li, Yuan
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.105-110
    • /
    • 2022
  • Al2O3 positively charged nanofiltration composite membrane was successfully prepared with aluminate coupling agent (ACA) as modifier, sodium bisulfite (NaHSO3) and potassium persulfate (K2S2O8) as initiator and methacryloyloxyethyl trimethylammonium chloride (DMC) as crosslinking monomer. The surface of the membrane before grafting and after polymerization were characterized by SEM and FT-IR. Three factor and three-level orthogonal experiments were designed to explore the optimal conditions for membrane preparation, and the optimal group was successfully prepared. The filtration experiments of different salt solutions were carried out, and the retention molecular weight was determined by polyethylene glycol (PEG). The results showed that the polymerization temperature had the greatest effect on the rejection rate, followed by the reaction time, and the concentration of DMC had the least effect on the rejection rate. The rejection rates of CaCl2, MgSO4, NaCl and Na2SO4 in the optimal group were 83.8%, 81.3%, 28.1% and 23.6% (average value), respectively. The molecule weight cut-off of 90% (MWCO) of the optimal group was about 460, which belongs to nanofiltration membrane.

수중 테트라사이클린의 미세플라스틱에 대한 흡착 특성 (Sorption Characteristics of Tetracycline in Water on Microplastics)

  • 서유진;이루리;조은혜
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.276-281
    • /
    • 2022
  • BACKGROUND: Plastics that are used in our daily lives largely end up in the environment. In agricultural environments, plastic wastes and microplastics can be found due to the uses and improper management of plastic products (e.g., vinyl greenhouses and mulching vinyl). Microplastics can also interact with contaminants in the agricultural environment. Therefore, this study was set to investigate the sorption characteristics of tetracycline, one of widely used antibiotics, on microplastics. METHODS AND RESULTS: The sorption tests were carried out with the tetracycline solutions (0-30 mg L-1) and microplastic films prepared from low density polyethylene (LDPE) and polyvinyl chloride (PVC). The residual tetracycline concentrations were analyzed and fitted to the Freundlich and Langmuir isotherm models. The tetracycline sorption patterns on LDPE and PVC films were described better with the Freundlich isotherm model than the Langmuir isotherm model. The isotherm model parameters suggested that the maximum sorption amount of tetracyline was greater for PVC, while the sorption affinity was greater for LDPE. CONCLUSION(S): Different types of microplastics can have different sorption characteristics of tetracycline. Therefore, there is a need for continuous research on the interaction of various types and shapes of microplastics and contaminants in the environment.