DOI QR코드

DOI QR Code

Phase Changes of Calcium Carbonate by Temperature and RPM in Continuous Crystallizer

연속식 결정화기에서 온도와 교반속도에 의한 탄산칼슘 결정의 형상변화

  • Shin, Yuonjeong (Department of chemical engineering Soonchunhyang University) ;
  • Han, Hyunkak (Department of chemical engineering Soonchunhyang University)
  • 신윤정 (순천향대학교 나노화학공학과) ;
  • 한현각 (순천향대학교 나노화학공학과)
  • Published : 2019.10.01

Abstract

Calcium carbonate involves three phases such as calcite, vaterite, and aragonite. Calcite and aragonite were more thermodynamically stable than vaterite. The synthesis of aragonite crystals by the reaction with sodium carbonate and calcium chloride solutions was investigated focusing on the effect of temperature and rpm in continuous crystallizer. In the batch crystallization test, calcite was synthesized by a relatively low temperature (under $40^{\circ}C$), but aragonite was formed at high temperature. In the continuous process with 100 rpm, no aragonite was found regardless of reaction temperature. But as increasing the stirring rate to 300 rpm and 500 rpm, the ratio of aragonite to calcite increased as increasing the temperature.

탄산칼슘은 칼사이트, 바테라이트, 아라고나이트 3개의 상이 있다. 칼사이트와 아라고나이트는 열역학적으로는 바테라이트 보다 안정하다. 연속식결정화기에서 탄산나트륨과 염화칼슘 용액반응으로 아라고나이트 결정 제조공정에서 온도와 혼합속도 영향에 대하여 연구하였다. 회분식결정화기에서 칼사이트는 상대적으로 낮은 온도($40^{\circ}C$ 아래)에서 생성되지만, 아라고나이트는 높은 온도에서 발견된다. 혼합속도가 100 rpm인 연속식결정화기에서, 아라고나이트는 어떤 반응온도에서도 발견할 수 없었다. 그러나 혼합속도가 300 rpm, 500 rpm으로 증가하면, 칼사이트와 아라고나이트의 비는 온도가 증가하면서 증가하였다.

Keywords

References

  1. Kang, D. H., "Powder Technology," 2nd ed. Heejungdang, Seoul, (1995).
  2. Kang, D. H., Rhue, P. J., Park, J. Y. and Choi, H. G., "Powder Process Engneering," Hongreung science press, Seoul(2012).
  3. Randolph, A. D. and Larson, M. A., "Theory of Particulate Process," 2nd ed. academic press, N.Y.(1988).
  4. Nyvlt, J., "Industrial Crystallization from Solution," Butterworth & co. Ltd. London(1971).
  5. Taevare, N. S., "Industrial Crystallization Process Simulation Analysis and Design," Plenum press, N.Y.(1995).
  6. Son, M. A., Kim, G. K., Han, K. W., Lee, M. W. and Lim, J. T., "Development Status and Research Direction in the Mineral Carbonation Technology," Korean Chem. Eng. Res., 55(2), 141-155(2017). https://doi.org/10.9713/kcer.2017.55.2.141
  7. IHS Markit, Chemical Economics Handbook: Calcium Carbonate, Find-Ground and Precipitated(2014).
  8. Roskill Information Services, "Ground & Precipitated Calcium Carbonate: Global Industry Markets & Outlook," 1st Ed.(2012).
  9. Kazuto, T., Kiyoshi, K., Yasunori, N., and Yasuhiro, O., "Process for Preparing Calcium Carbonate," US Patent 6, 190,633(2001).
  10. Ota, Y., Goto, N., Motoyama, I., Iwashita, T. and Nomura, K., "Process of Producing Needle-shaped Calcium Carbonate Particles," US Patent 4, 824, 654(1989).
  11. Shang, W. Y., Liu, Q. F., He, E. G. and Chen, S. T., "Study on Properties of Polymers Packed by Aragonite Whisker," Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 1, 431-434(2000).
  12. Uebo, K., Yamazaki, O. R. and Yoshida, K., "Precipitation Mechanism of Calcium Carbonate Fine Particles in a Three Phase Reactor," Advanced Powder Technology, 3(7), 71-79(1992). https://doi.org/10.1016/S0921-8831(08)60690-1
  13. Lippmann, F., "Sedimentary Carbonate Minerals," Springer-Verlag(1973).
  14. Ogino, T., Suzuki, T. and Sawada, K., "The Formation and Transformation Mechanism of Calcium Carbonate in Water," Geochimica et. Cosmochim. Acfa, 51, 2757-2767(1987). https://doi.org/10.1016/0016-7037(87)90155-4
  15. Suh, H. M., Keum, Y. H., Lee, M. Y., Jung, J. H. and Shon, B. H., "Review on the Effect of Parameters on Producing of Precipitated Calcium Carbonate," J. Environmental & Thermal Eng., 11(1), 19-34(2014).
  16. Han, H. K., Kwon, C. S., Jeon, J. S. and Choi, I. J., "Phase Change of Calcium Carbonate Crystals by Adding Additives," J. Korea Academia-industrial Cooporation Society, 11(10), 4069-4074 (2010). https://doi.org/10.5762/KAIS.2010.11.10.4069
  17. Westin, K. J. and Rasmuson, A. C., "Crystal Growth of Aragonite Ans Calcite in the Presence of Citric Acid, DTPA, EDTA and Pyromellitic Acid," J. Colloid and Interface Sci., 282, 359-369(2005). https://doi.org/10.1016/j.jcis.2004.03.029
  18. Westin, K. J. and Rasmuson, A. C., "Precipitation of Calcium Carbonate in Presence of Citrate and EDTA," Desalination, 159, 107-118(2003). https://doi.org/10.1016/S0011-9164(03)90063-4
  19. Pyun, Y. R., Han, H. K. and Jeong, H. G., "Physical Property and Optimal Operation Condition in the Salting-out Dye Crystallization Systems," Korean Che. Eng. Res., 47(2), 157-162(2009).
  20. Han, H. K., "Change of Calcium Carbonate Crystal Size at Steady State in CMSMPR Crystallizer," J. Korea Academia-industrial Cooporation Society, 18(7), 714-719(2017).
  21. Kim, J. H., Ahn, J. W., Park, H. S. and Park, C. H., "Synthesis Peculiarity of the Precipitated Calcium Carbonate Polymorphs Following Variation of Supersaturation in $Ca(OH)_2$ and $Na_2CO_3$ Reaction," J. Korea Society for Geosys. Eng., 7(4), 95-102 (2004).
  22. Loftus, E., et al. "A Simple Method to Establish Calcite : Aragonite Ratios in Archaeological Mollusc Shells," J. Quaternary Science(2015).