• Title/Summary/Keyword: chlorella vulgaris

Search Result 146, Processing Time 0.02 seconds

Application of extracellular polymeric substances (EPSs)-bioflocculant for recovery of microalgae (미세조류 분리/회수를 위한 세포외 고분자물질 생물 응집제 활용)

  • Choi, Ohkyung;Dong, Dandan;Kim, Jongrack;Maeng, Sung Kyu;Kim, Keugtae;Lee, Jae Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • Microalgae are primary producers of aquatic ecosystems, securing biodiversity and health of the ecosystem and contributing to reducing the impact of climate change through carbon dioxide fixation. Also, they are useful biomass that can be used as biological resources for producing valuable industrial products. However, harvesting process, which is the separation of microalgal biomass from mixed liquor, is an important bottleneck in use of valorization of microalgae as a bioresource accounting for 20 to 30% of the total production cost. This study investigates the applicability of sewage sludge-derived extracellular polymeric substance (EPS) as bioflucculant for harvesting microalgae. We compared the flocculation characteristics of microalgae using EPSs extracted from sewage sludge by three methods. The flocculation efficiency of microalgae is closely related to the carbohydrate and protein concentrations of EPS. Heat-extracted EPS contains the highest carbohydrate and protein concentrations and can be a best-suited bioflocculant for microalgae recovery with 87.2% flocculation efficiency. Injection of bioflocculant improved the flocculation efficiency of all three different algal strains, Chlorella Vulgaris, Chlamydomonas Asymmetrica, Scenedesmus sp., however the improvement was more significant when it was used for flocculation of Chlamydomonas Asymmetrica with flagella.

Microalgal diversity in response to differential heavy metals-contaminated wastewater levels at North Nile Delta, Egypt

  • Maha Youssef Kamal Elmousel;Eithar El-Mohsnawy;Yassin Mohamed Al-Sodany;Eladl Galal Eltanahy;Mohamed Ali Abbas;Awatif Saad Ali
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.157-167
    • /
    • 2023
  • Background: The most hazardous wastewater sources in the northern part of the Middle Nile Delta, Egypt; receiving a massive amount of agricultural, industrial, and sewage drainage are Kitchener drain which is one of the tallest drainage systems, and Burullus Lake which represents the 2nd largest Egyptian coastal lake. Results: The current work is to determine the abundance and frequency of cyanophytes, chlorophytes, and bacillariophytes and the correlation between them and environmental abiotic components. Among sixty nine microalgal species, 19 species are belong Cyanophyta, 26 belong Chlorophyta and 24 belong Bacillariophyta. Genus Scenedesmus (Chlorophyta) was the most abundant in the study area (13 species), followed by Genus Oscillatoria (9 species) and Genus Navicula (7 species). Nostoc muscorum and Chlorella vulgaris were the most common and recorded in all sites (100% of the locations) under study. The application of the two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis revealed agglomerating of 4 groups (communities) at 4th level of classification and reasonable segregation between these groups. Zinc, cadmium and lead were showed the highest levels (0.26±0.03, 0.26±0.06, and 0.17±0.01 ppm, respectively). Conclusions: The correlation analysis between water and community variables indicated a high negative correlation of total algae richness with nickel (r = -0.936, p < 0.01). Cyanophyta and Bacillariophyta were correlated negatively (r = -0.842, p < 0.01). However, Chlorophyta showed a negative richness with each of Ni and Pb (r = -0.965, -0.873, respectively) on one hand and a high positive correlation was revealed (r = 0.964) with all environmental variables on the other hand.

Fundamentals of Ecotoxicity Evaluation Methods Using Domestic Aquatic Organisms in Korea: (KII) Green Algae (국내 생물종을 이용한 생태독성평가 기반연구: (III) 녹조류)

  • An, Youn-Joo;Nam, Sun-Hwa;Baek, Yong-Wook
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • Green algae are important primary producers in aquatic ecosystem, and they are sensitive test species in bioassay. Green algae are broadly used to assess the adverse effects of various chemicals by measuring the inhibition of metabolism, reproduction and survival. In this study, we extensively gathered domestic and foreign toxicity test methods conducted using green algae, which are distributed in Korean water environment. Selected eight domestic green algae were Chlamydomonas reinhardtii, Desmodesmus subspicatus (=Scenedesmus subspicatus), Scenedesmus abundans, Scenedesmus acutus, Scenedesmus quadricauda, Podohedriella falcata (=Ankistrodesmus falcatus), Pseudokirchneriella subcapitata (=Selenastrum capricornutum), and Chlorella vulgaris. Forty four test methods were collected from the standard test ones, government reports, SCI papers and Korean research papers. P. subcapitata and D. subspicatus are the most common test species recommended by the standard test methods. Initial cell density and dilution water were the main differences among the test methods we collected. We proposed the suitable ecotoxicity test methods based on domestic green algae in Korea. This study could be a fundamental basis to establish the ecotoxicity test methods by green algae distributed in Korea.

Overwintering and Succession of the Phytoplankton in Pilot Culture System (현장규모 대형 배양장치에서 식물플랑크톤의 월동 및 천이)

  • Noh, Seongyu;Lee, Kyung-Lak;Shin, Yuna;Lee, Jaeyoon;Song, Mi-Ae;Lee, Jaean;Rhew, Doughee;Lee, Jaekwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.57-69
    • /
    • 2017
  • Overwintering and succession of phytoplankton community with physicochemical and biological characteristics were investigated in pilot culture system. Water and phytoplankton samples were collected twice a week from February 23 to June 28, 2016. A total of 17 overwintering taxa including cyanophyceae, chlorophyceae, bacillariophyceae were identified in the experimental group in winter (February), and these overwintering species showed a marked succession pattern along with environment changes. In the process of phytoplankton succession, a total of 56 species in 28 genera were identified in two (experimental, control) pilot culture system. In the experimental group, 52 phytoplankton species in 24 genera were identified, and the number of taxa was highest in chlorophyceae (35 species), followed by Bacillariophyceae (9 species), Cyanophyceae (5 species) and others (3 species). In the control group, 25 phytoplankton species in 14 genera were classified and these taxa consisted of 17 chlorophyceae, 3 cyanophyceae, 2 Bacillariophyceae and 3 others. The standing crops ranged from 40 to $325,450cells\;mL^{-1}$ in the experimental group, and from 900 to $37,100cells\;mL^{-1}$ in the control group, respectively. The dominant species were represented by Monoraphidium minutum, Microcystis aeruginosa, Rhodomonas lacustris, Ankyra judai and Chlorella vulgaris in the experimental group; and M. minutum and Coenochloris cf. pyrenoidosa in the control group. In conclusion, overwintering and succession of predominant phytoplankton species developed due to interactions of internal environmental factors(physicochemical and biological factors) in the pilot culture system.

The Risk Assessment of Butachlor for the Freshwater Aquatic Organisms (Butachlor의 수서생물에 대한 위해성 평가)

  • Park, Yeon-Ki;Bae, Chul-Han;Kim, Byung-Seok;Lee, Jea-Bong;You, Are-Sun;Hong, Soon-Sung;Park, Kyung-Hoon;Shin, Jin-Sup;Hong, Moo-Ki;Lee, Kyu-Seung;Lee, Jung-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • To assess the effect of butachlor on freshwater aquatic organisms, acute toxicity studies for algae, invertebrate and fishes were conducted. The algae grow inhibition studies were carried out to determine the growth inhibition effects of butachlor (Tech. 93.4%) in Pseudokirchneriella subcapitata (formerly knows as Selenastrum capriconutum), Desmodesmus subspicatus (formerly known as Scendusmus subspicatus), and Chlorella vulgaris during the exposure period of 72 hours. The toxicological responses of P. subcapitata, D. subspicatus, and C. vulgaris to butachlor, expressed in individual $ErC_{50}$ values were 0.002, 0.019, and $10.4mgL^{-1}$, respectively and NOEC values were 0.0008, 0.0016, and $5.34mg\;L^{-1}$, respectively. P. subcapitata was more sensitive than any other algae species. Butachlor has very high toxicity to the algae, such as P. subcapitata and D. subspicatu. In the acute immobilisation test for Daphnia magna, the 24 and $48h-EC_{50}$ values were 2.55 and $1.50mg\;L^{-1}$, respectively. As the results of the acute toxicity test on Cyprinus carpio, Oryzias latipes and Misgurnus anguillicaudatus, the $96h-LC_{50}s$ were 0.62, 0.41 and $0.24mg\;L^{-1}$, respectively. The following ecological risk assessment of butachlor was performed on the basis of the toxicological data of algae, invertebrate and fish and exposure concentrations in rice paddy, drain and river. When a butachlor formulation is applied in rice paddy field according to label recommendation, the measured concentration of butachlor in paddy water was $0.41mg\;L^{-1}$ and the predicted environmental concentration (PEC) of butachlor in drain water was $0.03 mg\;L^{-1}$. Residues of butachlor detected in major rivers between 1997 and 1998 were ranged from $0.0004mg\;L^{-1}$ to $0.0029mg\;L^{-1}$. Toxicity exposure ratios (TERs) of algae in rice paddy, drain and river were 0.004, 0.05 and 0.36, respectively and indicated that butachlor has a risk to algae in rice paddy, drain and river. On the other hand, TERs of invertebrate in rice paddy, drain and river were 3.6, 50 and 357, respectively, well above 2, indicating no risk to invertebrate. TERs of fish in rice paddy, drain and river were 0.58, 8 and 57, respectively. The TERs for fish indicated that butachlor poses a risk to fish in rice paddy but has no risk to fish in agricultural drain and river. In conclusion, butachlor has a minimal risk to algae in agricultural drain and river exposed from rice drainage but has no risk to invertebrate and fish.

Simultaneous Treatment of Carbon Dioxide and Ammonia by Microalgal Culture (조류배양을 통한 이산화탄소 및 암모니아의 동시처리)

  • ;;Bohumil Volesky
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.328-336
    • /
    • 1999
  • A green microalga, Chlorella vulgaris UTX 259, was cultivated in a bench-scale raceway pond. During the culture, 15%(v/v) $CO_2$ was supplied and industrial wastewater discharged from a steel-making plant was used as a culture medium. In a small scale culture bottle, the microalga grew up to 1.8 g $dm^{-3}$ of cell concentration and ammonia was completely removed from the wastewater with an yield coefficient of 25.7 g dry cell weight $g^{-1}\;NH_3-N$. During the bottle-culture, microalga was dominant over heterotrophic microorganisms in the culture medium. Therefore, the amount of carbon dioxide fixation could be estimated from the change of dry cell weight. In a semi-continuous operation of raceway pond with intermittent lighting (12 h light and 12 h dark), increase of dilution rate resulted in increase of the ammonia removal rate as well as the $CO_2$ fixation rate but the ammonia removal efficiency decreased. Ammonia was not completely removed from the medium (wastewater) of raceway pond which was operated in a batch mode under a light intensity up to 20 klux. The incomplete removal of ammonia was believed due to insufficient light supply. A mathematical model, capable of predicting experimental data, was developed in order to simulate the performance of the raceway pond under the light intensity of sun during a bright daytime. Simulation results showed that the rates of $CO_2$ fixation and ammonia removal could be enhanced by increasing light intensity. According to the simulation, 80 mg $dm^{-3}$ of ammonia in the medium could be completely removed if the light intensity was over 60 klux with a continuous lighting. Under the optimal operating condition determined by the simulation, the rates of carbon dioxide fixation and ammonia removal in the outdoor operation of raceway pond were estimated as high as $24.7 g m^{-2} day^{-1}$ and $0.52 g NH_3-N m^{-2} day^{-1}$, respectively.

  • PDF