• 제목/요약/키워드: chitinase and antibiotic

검색결과 11건 처리시간 0.026초

항진균성 방선균 Promicromonospora sp. KH-28이 생산하는 Chitinase와 항생물질에 의한 시드름병균 F. oxysporum의 생육억제 (Antagonistic Role of Chitinase and Antibiotic Produced by Promicromonospora sp. KH-28 toward F.oxysporum)

  • 한길환;이창은;김상달
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.349-353
    • /
    • 1999
  • Antagonistic Promicromonospora sp. KH-28 isolated from a suppressive soil could produced a chitinase and a antifungal antibiotic for the biocontrol ability. The chitinase and the antibiotic appeared to inhibit plant pathogens of Fusarium oxysporum. Phytophthora capsici, Alternaria kiki, fusarium solani, Stemphylium sp., and Psudomonas fluorescens. the antibiotic produced from the strain was identified as a antifungal substance of 503 dalton having a pyrimidine skeleton with an aliphatic side chain. The Promicromonospora sp. KH-28 was able to suppress effectively F. oxysporum derived-fusarium wilt of red-pepper plant in the pot in vivo test.

  • PDF

Chitinase와 항진균성 항생물질을 생산하는 방선균 Promicromonospora sp. KH-28의 선발과 동정 (Selection and Identification of Promicromonospora sp. KH-28 Producing Chitinase and Antifungal Antibiotic)

  • 한길환;김상달
    • 한국미생물·생명공학회지
    • /
    • 제27권3호
    • /
    • pp.191-196
    • /
    • 1999
  • A multifunctional antagonistic bacterium, producing both antifungal antibiotic and chitinase that could be used as biocontrol agents against fungal plant pathogens was isolated from the plant-disease suppressive soil. The isolate was identified as Promicromonospora sp. KH-28 from various morphological, biochemical and physiological tests. The antifungal antibiotic produced by Promicromonospora sp. KH-28 was soluble in n-butanol, methanol, toluene, n-hexane, ethanol but insoluble in H2O, acetone, chloroform, ethylacetate and ethylether. It inhibited the growth of fungal plant pathogens of Fusarium solani, F. oxysporum, Alternaria mali and Phytophthora capsici. The antagonistic Promicromonospora sp. KH-28 produced optimally the antifungal antibiotic when it was cultivated at pH 7, 3$0^{\circ}C$ for 5 days.

  • PDF

Expression of Chitinase Gene in Solanum tuberosum L.

  • Park, Kyung-Hwa;Yang, Deok-Chun;Jeon, Jae-Heung;Kim, Hyun-Soon;Joung, Young-Hee;Hyouk Joung
    • Journal of Plant Biotechnology
    • /
    • 제1권2호
    • /
    • pp.85-90
    • /
    • 1999
  • In order to protect fungal diseases, leaf disc explants of Solanum tuberosum cultivar, Belchip, was infected with an Agrobacterium MP90 strain containing chimeric gene construct, consisting of antibiotic resistance and chitinase gene driven by the CaMV 35S promoter, for transformation. Regenerated multiple shoots were selected on a medium containing kanamycin and carbenicillin after exposure to Agrobacterium. The presence and integration of the npt II and chitinase gene were confirmed by polymerase chain reaction(PCR). Northern blot analysis indicated that the genes coding for the enzyme could be expressed in potato plants. The chitinase activity of transgenic potato plants was higher than the control potato.

  • PDF

식물병원진균을 길항하는 chitinase 생산성 생물방제균 Bacillus amyloliquefaciens 7079의 선발과 chitinase 생산조건 (Chitinase of Multifunctional Antagonistic Bacterium Bacillus amyloliquefaciens 7079 against Phy-tophathogenic fungi)

  • 한옥경
    • 한국미생물·생명공학회지
    • /
    • 제29권3호
    • /
    • pp.142-148
    • /
    • 2001
  • 경주 인근 지역의 토양으로부터 식물병원성 진균 Fusarium oxysprum과 phytophthora capsici를 동시에 길항할수있는 항진균성 항생물질 생산성 생물방제균을 분리하고, 성분을 함유한 병원진균의 세포벽을 분해하는 chitinase 생산성이 우수한 균주를 분리하고자 하였다. 분리된 생물방제균의 형태학적, 생화학적 및 배양학적으로 동정하여 잠정적으로 Bacillus amyloliquefaciens 7079로 동정하였다. 이 생물방제균이 생산하는 chitinase 생산의 최적 조건을 검토하여 본 결과 Chitin-yeast extract 배지(0.7% $K_2$$HPO_4$ 0.2% $KH_2$$PO_4$ 0.1%($NH_4$)$_2$$SO_4$ 0.05% sodium citrate 0.01% MgSO$_4$$7H_2$O 0.1% yeast extract, 0.1% coloida chitin)에서 pH는 7.0 배양온도는 3$0^{\circ}C$였고 배양한 후 3일 이 되었을 때 가장 많은 chitinase를 생산하였다. 또한 0.1% colloida chitin을 탄소원으로 하여 배양하였을 때 chitinase 생산성이 가장 좋았으며 0.15% proteose peptone NO .3 또는 0.1% tryptone 을 질소원으로 하여 배양하였을 때 효소 생산이 높게 나타났다. 선발된 생물방제균의 고추를 기주식물로한 in vivo pot 시험 결과 고추역병균 Phytophthora capsici에 좋은 길항력을 확인할 수 있었다.

  • PDF

Chitinase-producing Salinivibrio bacteria isolated from salt-fermented shrimp with antimicrobial and safety assessments

  • Le, Bao;Chung, Gyuhwa;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • 제61권3호
    • /
    • pp.233-238
    • /
    • 2018
  • Chitinases are glycosyl hydrolases which cleave the ${\beta}$-1,4 linkage of chitin into oligo or monomers of N-acetylglucosamine. These bacterial enzymes have been used for a wide range of applications in the food and pharmaceutical industries. In this study, we isolated two potential chitinolytic strains, BAO-01 and BAO-02, from salt-fermented shrimp, which were shown to belong to the genus Salinivibrio through genetic characterization using 16S rRNA. These isolates were gram-positive, rod-shaped, and non-spore forming. BAO-01 showed greater growth and chitinase activity than BAO-02 after the incubation at $37^{\circ}C$ for 4 days. Both strains grew on a wide range of carbon and nitrogen sources, pH values, temperatures, and salt levels. However, they showed minor biochemical differences. In addition, their antimicrobial activities against foodborne pathogens and antibiotic susceptibilities were evaluated. These Salinivibrio spp. did not show bioamine production, hemolytic activity, and mucin degradation. Therefore, the in vitro screening results suggested that these bacteria could be widely used as new candidates for chitin hydrolyzation and seafood fermentation.

Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제 (Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil)

  • ;조민영;이용성;박윤석;박노동;남이;김길용
    • 한국토양비료학회지
    • /
    • 제43권4호
    • /
    • pp.490-497
    • /
    • 2010
  • 근권토양으로부터 고추역병균을 포함한 다양한 식물 병원성 곰팡이에 대하여 항균활성이 강한 세균을 분리하였다. 이 세균은 16S rRNA gene서열 분석 결과 Lysobacter enzymogens로 동정되었고 LE429로 명명 하였다. LE429는 chitinase, ${\beta}-1$, 3-glucanase, protease, gelatinase, lipase 및 항생물질과 같은 다양한 이차대사산물을 분비하였다. 항생물질은 diaon HP-20 및 sephadex LH-20 컬럼크로마토그래피 및 HPLC로 정제하여, GC-EI 및 GC-CI분석을 통하여 phenylacetic acid로 동정되었다. Field 실험에서 LE429의 고추 병해 억제 효과를 조사하기 위해 LE429배양액(CB), Neem oil 용액 (NO), LE429배양액과 Neem oil 용액을 섞은 혼합액(CB+NO), 그리고 대조구로서 물(CON)을 각각 고추에 처리하였다. 고추의 수량구성요소는 일반적으로 CB 처리구가 가장 높았고, CB+NO, CON 그리고 NO 순서로 나타났다. CB 처리구에서 병원성 곰팡이는 강하게 억제 되었지만, 몇몇 해충이 발견되었다. NO 처리구에서는 해충은 발견 되지 않았지만, 병원성 곰팡이가 발견 되었다. 하지만, CB+NO 처리구에서 병원성 곰팡이 및 해충이 전혀 발견 되지 않았다. 결론적으로, 2차 대 사산물을 생산하는 LE429와 Neem oil의 혼합액은 고추에 발생하는 병원성 곰팡이와 해충에 대한 좋은 생물학적 방제제가 될 수 있다고 사료된다.

Chemical Composition and Quorum Sensing Inhibitory Effect of Nepeta curviflora Methanolic Extract against ESBL Pseudomonas aeruginosa

  • Haitham Qaralleh
    • 대한약침학회지
    • /
    • 제26권4호
    • /
    • pp.307-318
    • /
    • 2023
  • Objectives: Bacterial biofilm is regarded as a significant threat to the production of safe food and the arise of antibiotic-resistant bacteria. The objective of this investigation is to evaluate the quorum sensing inhibitory effect of Nepeta curviflora methanolic extract. Methods: The effectiveness of the leaves at sub-inhibitory concentrations of 2.5, 1.25, and 0.6 mg/mL on the virulence factors and biofilm formation of P. aeruginosa was evaluated. The effect of N. curviflora methanolic extract on the virulence factors of P. aeruginosa, including pyocyanin, rhamnolipid, protease, and chitinase, was evaluated. Other tests including the crystal violet assay, scanning electron microscopy (SEM), swarming motility, aggregation ability, hydrophobicity and exopolysaccharide production were conducted to assess the effect of the extract on the formation of biofilm. Insight into the mode of antiquorum sensing action was evaluated by examining the effect of the extract on the activity of N-Acyl homoserine lactone (AHL) and the expression of pslA and pelA genes. Results: The results showed a significant attenuation in the production of pyocyanin and rhamnolipid and in the activities of protease and chitinase enzymes at 2.5 and 1.25 mg/mL. In addition, N. curviflora methanolic extract significantly inhibited the formation of P. aeruginosa biofilm by decreasing aggregation, hydrophobicity, and swarming motility as well as the production of exopolysaccharide (EPS). A significant reduction in AHL secretion and pslA gene expression was observed, indicating that the extract inhibited quorum sensing by disrupting the quorum-sensing systems. The quorum-sensing inhibitory effect of N. curviflora extract appears to be attributed to the presence of kaempferol, quercetin, salicylic acid, rutin, and rosmarinic acid, as indicated by LCMS analysis. Conclusion: The results of the present study provide insight into the potential of developing anti-quorum sensing agents using the extract and the identified compounds to treat infections resulting from quorum sensing-mediated bacterial pathogenesis.

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.