• 제목/요약/키워드: chimpanzee genome

검색결과 16건 처리시간 0.023초

REPEATOME: A Database for Repeat Element Comparative Analysis in Human and Chimpanzee

  • Woo, Tae-Ha;Hong, Tae-Hui;Kim, Sang-Soo;Chung, Won-Hyong;Kang, Hyo-Jin;Kim, Chang-Bae;Seo, Jung-Min
    • Genomics & Informatics
    • /
    • 제5권4호
    • /
    • pp.179-187
    • /
    • 2007
  • An increasing number of primate genomes are being sequenced. A direct comparison of repeat elements in human genes and their corresponding chimpanzee orthologs will not only give information on their evolution, but also shed light on the major evolutionary events that shaped our species. We have developed REPEATOME to enable visualization and subsequent comparisons of human and chimpanzee repeat elements. REPEATOME (http://www.repeatome.org/) provides easy access to a complete repeat element map of the human genome, as well as repeat element-associated information. It provides a convenient and effective way to access the repeat elements within or spanning the functional regions in human and chimpanzee genome sequences. REPEATOME includes information to compare repeat elements and gene structures of human genes and their counterparts in chimpanzee. This database can be accessed using comparative search options such as intersection, union, and difference to find lineage-specific or common repeat elements. REPEATOME allows researchers to perform visualization and comparative analysis of repeat elements in human and chimpanzee.

Comparative Genomics Study of Interferon-$\alpha$ Receptor-1 in Humans and Chimpanzees

  • Kim, Il-Chul;Chi, Seung-Wook;Kim, Dae-Won;Choi, Sang-Haeng;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제3권4호
    • /
    • pp.142-148
    • /
    • 2005
  • The immune response-related genes have been suggested to be the most favorable genes for positive selection during evolution. Comparing the entire DNA sequence of chimpanzee chromosome 22 (PTR22) with human chromosome 21 (HSA21), we have identified 15 orthologs having indel in their coding sequences. Among them, interferon-${\alpha}$ receptor-1 gene (IFNAR1), an immuneresponse-related gene, is subjected to comparative genomic analysis. Chimpanzee IFNAR1 showed the same genomic structure as human IFNAR1 (11 exons and 10 introns) except the 3 bp insertion in exon 4. The sequence alignment of IFNAR1 coding sequence indicated that 'ISPP' amino acid sequence motif is highly conserved in chimpanzee and other animals including mouse and chicken. However, the human IFNAR1 shows that one proline residue is missing in the sequence motif. The homology modeling of the IFNAR1 structures suggests that the proline deletion in human IFNAR1 leads to the formation of the following ${\alpha}$-helix, whereas two sequential prolines in chimpanzee IFNAR1 inhibit it. As a result, human IFNAR1 may adopt a characteristic structure distinct from chimpanzee IFNAR1. This human specific trait could contribute to specific immune response in the most optimized manner for humans. Further molecular biological studies on the IFNAR1 will help us to gain insights into the molecular implication of species-specific host-pathogen interaction in primate evolution.

인간-침팬지간 대량의 지놈서열 비교분석 (Comparative Analysis of Large Genome in Human-Chimpanzee)

  • Kim, Tae-Hyung;Kim, Dae-Soo;Jeon, Yeo-Jin;Cho, Hwan-Gue;Kim, Heui-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.183-192
    • /
    • 2003
  • With the availability of complete whole-genomes such as the human, mouse, fugu and chimpanzee chromosome 22, comparative analysis of large genomes from cross-species at varying evolutionary distances is considered one of a powerful approach for identifying coding and functional non-coding sequences. Here we describe a fast and efficient global alignment method especially for large genomic regions over mega bases pair. We used an approach for identifying all similarity regions by HSP (Highest Segment Pair) regions using local alignments and then large syntenic genome based on the both extension of anchors at HSP regions in two species and global conservation map. Using this alignment approach, we examined rearrangement loci in human chromosome 21 and chimpanzee chromosome 22. Finally, we extracted syntenic genome 30 Mb of human chromosome 21 with chimpanzee chromosome 22, and then identified genomic rearrangements (deletions and insertions ranging h size from 0.3 to 200 kb). Our experiment shows that all jnsertion/deletion (indel) events in excess of 300 bp within chimpanzee chromosome 22 and human chromosome 21 alignments in order to identify new insertions that had occurred over the last 7 million years of evolution. Finally we also discussed evolutionary features throughout comparative analyses of Ka/ks (non-synonymous / synonymous substitutions) rate in orthologous 119 genes of chromosome 21 and 53 genes of MHC-I class in human and chimpanzee genome.

  • PDF

Comparative Genomics of T-complex protein 10 like in Humans and Chimpanzees

  • Kim, Il-Chul;Kim, Dae-Soo;Kim, Dae-Won;Choi, Sang-Haeng;Choi, Han-Ho;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.61-65
    • /
    • 2005
  • Comparing 231 genes on chimpanzee chromosome 22 with their orthologous on human chromosome 21, we have found that 15 orthologs have indels within their coding sequences. It was rather surprising that significant number of genes have changed by indel, despite the shorter time since their divergence and led us hypothesize that indels and structural changes may represent one of the major mechanism of proteome evolution in the higher primates. Human T-complex protein 10 like (TCP 10L) is a representative having indel within its coding sequence. Gene structure of human TCP10L compared with chimpanzee TCP10L gene showed 16 base pair difference in genomic DNA. As a result of the indel, frame shift mutation occurs in coding sequence (CDS) and human TCP10L express longer polypeptide of 21 amino acid residues than that of chimpanzee. Our prediction found that the indel may affect to dramatic change of secondary protein structure between human and chimpanzee TCP10L. Especially, the structural changes in the C-terminal region of TCP10L protein may affect on the interacting potential to other proteins rather than DNA binding function of the protein. Through these changes, TCP10L might influence gene expression profiles in liver and testis and subsequently influence the physiological changes required in primate evolution.

아프리카 대형 유인원(침팬지, 고릴라) : 특징, 계통 및 진화 (African great apes (chimpanzee and gorilla) : feature, phylogeny and evolution)

  • 홍경원;김희수
    • 생명과학회지
    • /
    • 제13권2호
    • /
    • pp.175-183
    • /
    • 2003
  • 침팬지와 고릴라는 영장목의 사람상과에 속한다. 이들은 아프리카 대형 유인원이라 불리며, 그들의 기원은 아프리카이다. 최근 영장류 학자들은 침팬지와 고릴라 각각 2종 5아종으로 분류하고 있다. 인간 게놈 프로젝트가 완성되었지만, 인간의 유전적 질병을 극복하고 인간의 진화를 풀기 위해서는 인간과 가장 유사한 아프리카 대형 유인원에 대한 연구가 요구된다. 인간의 21번에 상응하는 침팬지의 22번 염색체의 서열이 완성되었고, 현재 Y염색체 염기 서열이 분석되고 있다. 인간, 침팬지, 고릴라의 비교 연구로부터 인간이 가지는 다양한 질병에 대한 이해와 실마리를 제공해 줄 것이다. 영장류의 진화 과정에서 인간만이 가지는 기능성 유전자 및 가동성 유전자 (HERV, LINE, SINE)를 탐지해 냄으로 인해, 인간이란 무엇인가\ulcorner 라는 근본적인 의문점을 해명 할 수 있을 것이다. 이러한 영장류의 비교연구를 위해, 우리는 인간을 포함한 아프리카 대형 유인원에 대한 특징, 진화 및 계통 등의 기본적인 지식을 종합정리하여 보고하고자 한다.

PrimateDB: Development of Primate Genome DB and Web Service

  • Woo, Taeha;Shin, Gwangsik;Kang, Taewook;Kim, Byoungchul;Seo, Jungmin;Kim, Sang Soo;Kim, Chang-Bae
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.73-76
    • /
    • 2005
  • The comparative analysis of the human and primate genomes including the chimpanzee can reveal unique types of information impossible to obtain from comparing the human genome with the genomes of other vertebrates. PrimateDB is an open depository server that provides primate genome information for the comparative genome research. The database also provides an easy access to variable information within/between the primate genomes and supports analyzed information, such as annotation and retroelements and phylogeny. The comparative analyses of more primate genomes are also being included as the long-term objective.

Loss of gene function and evolution of human phenotypes

  • Oh, Hye Ji;Choi, Dongjin;Goh, Chul Jun;Hahn, Yoonsoo
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.373-379
    • /
    • 2015
  • Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits. [BMB Reports 2015; 48(7): 373-379]

Transposable Elements: No More 'Junk DNA'

  • Kim, Yun-Ji;Lee, Jungnam;Han, Kyudong
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.226-233
    • /
    • 2012
  • Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.