Loss of gene function and evolution of human phenotypes |
Oh, Hye Ji
(Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University)
Choi, Dongjin (Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University) Goh, Chul Jun (Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University) Hahn, Yoonsoo (Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University) |
1 | MacArthur DG, Seto JT, Raftery JM et al (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39, 1261-1265 DOI ScienceOn |
2 | Yang N, MacArthur DG, Gulbin JP et al (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73, 627-631 DOI ScienceOn |
3 | Niemi AK and Majamaa K (2005) Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 13, 965-969 DOI ScienceOn |
4 | Roth SM, Walsh S, Liu D, Metter EJ, Ferrucci L and Hurley BF (2008) The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet 16, 391-394 DOI ScienceOn |
5 | Bramble DM and Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432, 345-352 DOI ScienceOn |
6 | Ruxton GD and Wilkinson DM (2013) Endurance running and its relevance to scavenging by early hominins. Evolution 67, 861-867 DOI ScienceOn |
7 | Lin YL, Pavlidis P, Karakoc E, Ajay J and Gokcumen O (2015) The evolution and functional impact of human deletion variants shared with archaic hominin genomes. Mol Biol Evol 32, 1008-1019 DOI ScienceOn |
8 | Dragic T, Litwin V, Allaway GP et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667-673 DOI ScienceOn |
9 | Deng H, Liu R, Ellmeier W et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661-666 DOI ScienceOn |
10 | Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370, 901-910 DOI ScienceOn |
11 | Liu R, Paxton WA, Choe S et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367-377 DOI ScienceOn |
12 | Sabeti PC, Walsh E, Schaffner SF et al (2005) The case for selection at CCR5-D32. PLoS Biol 3, e378 DOI ScienceOn |
13 | Hutter G, Nowak D, Mossner M et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360, 692-698 DOI ScienceOn |
14 | Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87, 171 DOI ScienceOn |
15 | Fischer H, Koenig U, Eckhart L and Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293, 722-726 DOI ScienceOn |
16 | Stephens JC, Reich DE, Goldstein DB et al (1998) Dating the origin of the CCR5-D32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62, 1507-1515 DOI ScienceOn |
17 | Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA and Kunkel LM (1992) Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem 267, 9281-9288 |
18 | Mills M, Yang N, Weinberger R et al (2001) Differential expression of the actin-binding proteins, α-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10, 1335-1346 DOI ScienceOn |
19 | Alkuraya FS (2015) Human knockout research: new horizons and opportunities. Trends Genet 31, 108-115 DOI ScienceOn |
20 | Go Y, Satta Y, Takenaka O and Takahata N (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170, 313-326 DOI ScienceOn |
21 | Xue Y, Daly A, Yngvadottir B et al (2006) Spread of an inactive form of caspase-12 in humans is due to recent positive selection. Am J Hum Genet 78, 659-670 DOI ScienceOn |
22 | Saleh M, Vaillancourt JP, Graham RK et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75-79 DOI ScienceOn |
23 | North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S and Beggs AH (1999) A common nonsense mutation results in a-actinin-3 deficiency in the general population. Nat Genet 21, 353-354 DOI ScienceOn |
24 | Kim U, Wooding S, Ricci D, Jorde LB and Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26, 199-204 DOI ScienceOn |
25 | Su AI, Wiltshire T, Batalov S et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101, 6062-6067 DOI ScienceOn |
26 | Pronin AN, Xu H, Tang H, Zhang L, Li Q and Li X (2007) Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 17, 1403-1408 DOI ScienceOn |
27 | Roudnitzky N, Bufe B, Thalmann S et al (2011) Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Hum Mol Genet 20, 3437-3449 DOI ScienceOn |
28 | Samson M, Labbe O, Mollereau C, Vassart G and Parmentier M (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35, 3362-3367 DOI ScienceOn |
29 | Timmers HJ, Deinum J, Wevers RA and Lenders JW (2004) Congenital dopamine-β-hydroxylase deficiency in humans. Ann N Y Acad Sci 1018, 520-523 DOI ScienceOn |
30 | Yu L, Jin W, Wang JX et al (2010) Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol 27, 1467-1477 DOI ScienceOn |
31 | Cubells JF, Sun X, Li W et al (2011) Linkage analysis of plasma dopamine β-hydroxylase activity in families of patients with schizophrenia. Hum Genet 130, 635-643 DOI |
32 | Combarros O, Warden DR, Hammond N et al (2010) The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project. BMC Med Genet 11, 162 DOI ScienceOn |
33 | Kim DS, Wang Y, Oh HJ, Lee K and Hahn Y (2014) Frequent loss and alteration of the MOXD2 gene in catarrhines and whales: a possible connection with the evolution of olfaction. PLoS One 9, e104085 DOI ScienceOn |
34 | Kaiser J (2014) The hunt for missing genes. Science 344, 687-689 DOI ScienceOn |
35 | Yim HS, Cho YS, Guang X et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46, 88-92 DOI ScienceOn |
36 | McGowen MR, Clark C and Gatesy J (2008) The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst Biol 57, 574-590 DOI ScienceOn |
37 | MacArthur DG and Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 19, R125-130 DOI |
38 | Dong D, He G, Zhang S and Zhang Z (2009) Evolution of olfactory receptor genes in primates dominated by birth-and-death process. Genome Biol Evol 1, 258-264 DOI ScienceOn |
39 | Barton RA (2006) Olfactory evolution and behavioral ecology in primates. Am J Primatol 68, 545-558 DOI ScienceOn |
40 | Gerkin RC and Castro JB (2015) Humans can discriminate trillions of olfactory stimuli, or more, or fewer. arXiv 1502, 05120 |
41 | Niimura Y (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 13, 103-114 DOI ScienceOn |
42 | Matsui A, Go Y and Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 27, 1192-1200 DOI ScienceOn |
43 | Bushdid C, Magnasco MO, Vosshall LB and Keller A (2014) Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370-1372 DOI ScienceOn |
44 | Kiselyov K, van Rossum DB and Patterson RL (2010) TRPC channels in pheromone sensing. Vitam Horm 83, 197-213 DOI ScienceOn |
45 | Zhao H, Yang JR, Xu H and Zhang J (2010) Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol 27, 2669-2673 DOI ScienceOn |
46 | Vannier B, Peyton M, Boulay G et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96, 2060-2064 DOI |
47 | Liman ER and Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100, 3328-3332 DOI ScienceOn |
48 | Lubke KT and Pause BM (2015) Always follow your nose: the functional significance of social chemosignals in human reproduction and survival. Horm Behav 68, 134-144 DOI ScienceOn |
49 | Jiang P, Josue J, Li X et al (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A 109, 4956-4961 DOI ScienceOn |
50 | Wang X, Thomas SD and Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13, 2671-2678 DOI ScienceOn |
51 | Parry CM, Erkner A and le Coutre J (2004) Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proc Natl Acad Sci U S A 101, 14830-14834 DOI ScienceOn |
52 | Hayakawa T, Suzuki-Hashido N, Matsui A and Go Y (2014) Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade. Mol Biol Evol 31, 2018-2031 DOI ScienceOn |
53 | Perry GH, Kistler L, Kelaita MA and Sams AJ (2015) Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data. J Hum Evol 79, 55-63 DOI ScienceOn |
54 | Li X, Li W, Wang H et al (2005) Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar. PLoS Genet 1, 27-35 DOI ScienceOn |
55 | Buck L and Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187 DOI ScienceOn |
56 | Smith TD and Bhatnagar KP (2004) Microsmatic primates: reconsidering how and when size matters. Anat Rec B New Anat 279, 24-31 DOI |
57 | Bachmanov AA and Beauchamp GK (2007) Taste receptor genes. Annu Rev Nutr 27, 389-414 DOI ScienceOn |
58 | Varki A and Gagneux P (2009) Human-specific evolution of sialic acid targets: explaining the malignant malaria mystery? Proc Natl Acad Sci U S A 106, 14739-14740 DOI ScienceOn |
59 | Liu W, Li Y, Learn GH et al (2010) Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420-425 DOI ScienceOn |
60 | Currie P (2004) Human genetics: muscling in on hominid evolution. Nature 428, 373-374 DOI ScienceOn |
61 | Takahashi T, Takano M, Kurebayashi Y et al (2014) N-glycolylneuraminic acid on human epithelial cells prevents entry of influenza A viruses that possess N-glycolylneuraminic acid binding ability. J Virol 88, 8445-8456 DOI ScienceOn |
62 | Dawkins R and Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B Biol Sci 205, 489-511 DOI |
63 | Desjardins PR, Burkman JM, Shrager JB, Allmond LA and Stedman HH (2002) Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family. Mol Biol Evol 19, 375-393 DOI ScienceOn |
64 | Pennisi E (2004) Human evolution. The primate bite: brawn versus brain? Science 303, 1957 DOI ScienceOn |
65 | Hoh JF (2002) 'Superfast' or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J Exp Biol 205, 2203-2210 |
66 | Perry GH, Verrelli BC and Stone AC (2005) Comparative analyses reveal a complex history of molecular evolution for human MYH16. Mol Biol Evol 22, 379-382 DOI ScienceOn |
67 | McCollum MA, Sherwood CC, Vinyard CJ, Lovejoy CO and Schachat F (2006) Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines. J Hum Evol 50, 232-236 DOI ScienceOn |
68 | Wroe S, Ferrara TL, McHenry CR, Curnoe D and Chamoli U (2010) The craniomandibular mechanics of being human. Proc Biol Sci 277, 3579-3586 DOI ScienceOn |
69 | Zhu J, Sanborn JZ, Diekhans M, Lowe CB, Pringle TH and Haussler D (2007) Comparative genomics search for losses of long-established genes on the human lineage. PLoS Comput Biol 3, e247 DOI ScienceOn |
70 | Hayakawa T, Satta Y, Gagneux P, Varki A and Takahata N (2001) Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci U S A 98, 11399-11404 DOI ScienceOn |
71 | Bergfeld AK, Pearce OM, Diaz SL, Pham T and Varki A (2012) Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J Biol Chem 287, 28865-28881 DOI |
72 | Chou HH, Takematsu H, Diaz S et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95, 11751-11756 DOI |
73 | Varki NM, Strobert E, Dick EJ Jr, Benirschke K and Varki A (2011) Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. Annu Rev Pathol 6, 365-393 DOI ScienceOn |
74 | Rich SM, Leendertz FH, Xu G et al (2009) The origin of malignant malaria. Proc Natl Acad Sci U S A 106, 14902-14907 DOI ScienceOn |
75 | Chou HH, Hayakawa T, Diaz S et al (2002) Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci U S A 99, 11736-11741 DOI ScienceOn |
76 | Hayakawa T, Aki I, Varki A, Satta Y and Takahata N (2006) Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics 172, 1139-1146 DOI ScienceOn |
77 | Martin MJ, Rayner JC, Gagneux P, Barnwell JW and Varki A (2005) Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc Natl Acad Sci U S A 102, 12819-12824 DOI ScienceOn |
78 | Hahn Y, Jeong S and Lee B (2007) Inactivation of MOXD2 and S100A15A by exon deletion during human evolution. Mol Biol Evol 24, 2203-2212 DOI ScienceOn |
79 | Deng L, Song J, Gao X et al (2014) Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi. Cell 159, 1290-1299 DOI ScienceOn |
80 | McLean CY, Reno PL, Pollen AA et al (2011) Humanspecific loss of regulatory DNA and the evolution of human-specific traits. Nature 471, 216-219 DOI ScienceOn |
81 | Sumiyama K and Saitou N (2011) Loss-of-function mutation in a repressor module of human-specifically activated enhancer HACNS1. Mol Biol Evol 28, 3005-3007 DOI ScienceOn |
82 | Hahn Y and Lee B (2005) Identification of nine humanspecific frameshift mutations by comparative analysis of the human and the chimpanzee genome sequences. Bioinformatics 21 Suppl 1, i186-194 DOI ScienceOn |
83 | Yngvadottir B, Xue Y, Searle S et al (2009) A genome-wide survey of the prevalence and evolutionary forces acting on human nonsense SNPs. Am J Hum Genet 84, 224-234 DOI ScienceOn |
84 | Hahn Y and Lee B (2006) Human-specific nonsense mutations identified by genome sequence comparisons. Hum Genet 119, 169-178 DOI |
85 | Sulem P, Helgason H, Oddson A et al (2015) Identification of a large set of rare complete human knockouts. Nat Genet 47, 448-452 DOI ScienceOn |
86 | Wang X, Grus WE and Zhang J (2006) Gene losses during human origins. PLoS Biol 4, e52 DOI ScienceOn |
87 | Konopka G, Bomar JM, Winden K et al (2009) Humanspecific transcriptional regulation of CNS development genes by FOXP2. Nature 462, 213-217 DOI ScienceOn |
88 | Beniaminov A, Westhof E and Krol A (2008) Distinctive structures between chimpanzee and human in a brain noncoding RNA. RNA 14, 1270-1275 DOI ScienceOn |
89 | Kim DS and Hahn Y (2011) Identification of human-specific transcript variants induced by DNA insertions in the human genome. Bioinformatics 27, 14-21 DOI ScienceOn |
90 | Kim DS and Hahn Y (2011) Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence. Bioinformatics 27, 2494-2501 DOI |
91 | Kim DS and Hahn Y (2012) Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics 13, 306 DOI ScienceOn |
92 | Kim DS and Hahn Y (2012) Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence. BMC Bioinformatics 13, 299 DOI ScienceOn |
93 | Olson MV (1999) When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet 64, 18-23 DOI ScienceOn |
94 | Kim DS and Hahn Y (2015) The acquisition of novel N-glycosylation sites in conserved proteins during human evolution. BMC Bioinformatics 16, 29 DOI ScienceOn |
95 | Prabhakar S, Visel A, Akiyama JA et al (2008) Humanspecific gain of function in a developmental enhancer. Science 321, 1346-1350 DOI ScienceOn |
96 | Rogers J and Gibbs RA (2014) Comparative primate genomics: emerging patterns of genome content and dynamics. Nat Rev Genet 15, 347-359 DOI ScienceOn |
97 | Chen FC and Li WH (2001) Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 68, 444-456 DOI ScienceOn |
98 | Varki A and Altheide TK (2005) Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 15, 1746-1758 DOI ScienceOn |
99 | Patterson N, Richter DJ, Gnerre S, Lander ES and Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103-1108 DOI ScienceOn |
100 | Enard W, Przeworski M, Fisher SE et al (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869-872 DOI ScienceOn |
101 | Pollard KS, Salama SR, Lambert N et al (2006) An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167-172 DOI ScienceOn |
102 | Stedman HH, Kozyak BW, Nelson A et al (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428, 415-418 DOI ScienceOn |