Browse > Article
http://dx.doi.org/10.5808/GI.2012.10.4.226

Transposable Elements: No More 'Junk DNA'  

Kim, Yun-Ji (Department of Nanobiomedical Science, WCU Research Center, Dankook University)
Lee, Jungnam (Department of Nanobiomedical Science, WCU Research Center, Dankook University)
Han, Kyudong (Department of Nanobiomedical Science, WCU Research Center, Dankook University)
Abstract
Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.
Keywords
Alu elements; DNA transposable elements; endogenous retroviruses; long interspersed nucleotide elements; SVA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 O'Donnell KA, Burns KH. Mobilizing diversity: transposable element insertions in genetic variation and disease. Mob DNA 2010;1:21.   DOI
2 Ahmed M, Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012;2012:947089.
3 Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, et al. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 2006;78:671-679.   DOI   ScienceOn
4 Carter AB, Salem AH, Hedges DJ, Keegan CN, Kimball B, Walker JA, et al. Genome-wide analysis of the human Alu Yb-lineage. Hum Genomics 2004;1:167-178.
5 Han K, Xing J, Wang H, Hedges DJ, Garber RK, Cordaux R, et al. Under the genomic radar: the stealth model of Alu amplification. Genome Res 2005;15:655-664.   DOI   ScienceOn
6 Cordaux R. The human genome in the LINE of fire. Proc Natl Acad Sci U S A 2008;105:19033-19034.   DOI   ScienceOn
7 Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol 2005;354:994-1007.   DOI   ScienceOn
8 Hancks DC, Kazazian HH Jr. SVA retrotransposons: evolution and genetic instability. Semin Cancer Biol 2010;20:234-245.   DOI   ScienceOn
9 Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE. Natural genetic variation caused by transposable elements in humans. Genetics 2004;168:933-951.   DOI   ScienceOn
10 Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, et al. Mobile elements create structural variation: analysis of a complete human genome. Genome Res 2009;19:1516-1526.   DOI   ScienceOn
11 Kim HS. Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol Cells 2012; 33:539-544.   DOI   ScienceOn
12 Watkins WS, Rogers AR, Ostler CT, Wooding S, Bamshad MJ, Brassington AM, et al. Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res 2003;13:1607-1618.   DOI   ScienceOn
13 Srikanta D, Sen SK, Huang CT, Conlin EM, Rhodes RM, Batzer MA. An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair. Genomics 2009;93:205-212.   DOI   ScienceOn
14 Sen SK, Huang CT, Han K, Batzer MA. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res 2007;35:3741-3751.   DOI
15 Callinan PA, Batzer MA. Retrotransposable elements and human disease. Genome Dyn 2006;1:104-115.
16 Bergman CM. A proposal for the reference-based annotation of de novo transposable element insertions. Mob Genet Elements 2012;2:51-54.   DOI
17 Rogers J, Kochunov P, Zilles K, Shelledy W, Lancaster J, Thompson P, et al. On the genetic architecture of cortical folding and brain volume in primates. Neuroimage 2010;53:1103-1108.   DOI   ScienceOn
18 Britten RJ. Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci U S A 2010;107: 19945-19948.   DOI   ScienceOn
19 Boissinot S, Chevret P, Furano AV. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 2000;17:915-928.   DOI   ScienceOn
20 Belshaw R, Dawson AL, Woolven-Allen J, Redding J, Burt A, Tristem M. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005;79:12507-12514.   DOI   ScienceOn
21 Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011;8:90.   DOI
22 Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stutz AM, et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 2011;7:e1002236.   DOI
23 Konkel MK, Wang J, Liang P, Batzer MA. Identification and characterization of novel polymorphic LINE-1 insertions through comparison of two human genome sequence assemblies. Gene 2007;390:28-38.   DOI
24 Lee J, Ha J, Son SY, Han K. Human genomic deletions generated by SVA-associated events. Comp Funct Genomics 2012; 2012:807270.
25 Frayne J, Hall L. The gene for the human tMDC I sperm surface protein is non-functional: implications for its proposed role in mammalian sperm-egg recognition. Biochem J 1998; 334(Pt 1):171-176.   DOI
26 Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 2008;105:19366-19371.   DOI   ScienceOn
27 Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008;9:397-405.   DOI   ScienceOn
28 Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 2011;12: 615-627.   DOI
29 Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev 2003;17:419-437.   DOI   ScienceOn
30 Schmitz J, Brosius J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 2011;93: 1928-1934.   DOI   ScienceOn
31 Matlik K, Redik K, Speek M. L1 antisense promoter drives tissue- specific transcription of human genes. J Biomed Biotechnol 2006;2006:71753.
32 Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C, Sverdlov ED. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 2000;472:191-195.   DOI
33 Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC. Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 2009;4:e4456.   DOI
34 Kaer K, Branovets J, Hallikma A, Nigumann P, Speek M. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 2011;6:e26099.   DOI
35 Liu B, Alberts BM. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 1995;267:1131-1137.   DOI
36 Cui F, Sirotin MV, Zhurkin VB. Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 2011;6:2.   DOI
37 Wu J, Grindlay GJ, Bushel P, Mendelsohn L, Allan M. Negative regulation of the human epsilon-globin gene by transcriptional interference: role of an Alu repetitive element. Mol Cell Biol 1990;10:1209-1216.   DOI
38 Kondo Y, Issa JP. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J Biol Chem 2003;278: 27658-27662.   DOI
39 Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human gene promoters. Gene 2011;475:39-48.   DOI   ScienceOn
40 Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 2009;19:221-233.
41 Huda A, Marino-Ramirez L, Jordan IK. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA 2010;1:2.   DOI
42 Huda A, Tyagi E, Marino-Ramirez L, Bowen NJ, Jjingo D, Jordan IK. Prediction of transposable element derived enhancers using chromatin modification profiles. PLoS One 2011;6:e27513.   DOI
43 Xing J, Hedges DJ, Han K, Wang H, Cordaux R, Batzer MA. Alu element mutation spectra: molecular clocks and the effect of DNA methylation. J Mol Biol 2004;344:675-682.   DOI   ScienceOn
44 Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 2010;6:e1000917.   DOI
45 Matsuda Y, Yamashita S, Lee YC, Niwa T, Yoshida T, Gyobu K, et al. Hypomethylation of Alu repetitive elements in esophageal mucosa, and its potential contribution to the epigenetic field for cancerization. Cancer Causes Control 2012;23:865-873.   DOI   ScienceOn
46 Bae JM, Shin SH, Kwon HJ, Park SY, Kook MC, Kim YW, et al. ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer 2012;131:1323-1331.   DOI   ScienceOn
47 Piriyapongsa J, Marino-Ramirez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements. Genetics 2007;176:1323-1337.
48 Alzohairy AM, Gyulai G, Jansen RK, Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 2012 Aug 30 [Epub]. http://dx.doi.org/10.1016/j.plasmid.2012.08.001.
49 Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ, et al. Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 2007;316:238-240.   DOI   ScienceOn
50 McClintock B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 1956;21:197-216.
51 Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005;437:69-87.   DOI   ScienceOn
52 Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921.   DOI   ScienceOn
53 Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007;316:222-234.   DOI   ScienceOn
54 Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem 1992;61:1011-1051.   DOI   ScienceOn
55 Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 1993;72:595-605.   DOI   ScienceOn
56 Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191.   DOI   ScienceOn
57 Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703.   DOI   ScienceOn
58 Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183-193.   DOI   ScienceOn
59 Warnefors M, Pereira V, Eyre-Walker A. Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol Biol Evol 2010;27:1955-1962.   DOI   ScienceOn
60 Moran JV, DeBerardinis RJ, Kazazian HH Jr. Exon shuffling by L1 retrotransposition. Science 1999;283:1530-1534.   DOI
61 Venner S, Feschotte C, Biemont C. Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 2009;25:317-323.   DOI   ScienceOn
62 Baskaev KK, Buzdin AA. Evolutionary recent insertions of mobile elements and their contribution to the structure of human genome. Zh Obshch Biol 2012;73:3-20.
63 Lee J, Cordaux R, Han K, Wang J, Hedges DJ, Liang P, et al. Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons. Gene 2007;390:18-27.   DOI   ScienceOn
64 Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 2006;79:41-53.   DOI   ScienceOn
65 Callinan PA, Wang J, Herke SW, Garber RK, Liang P, Batzer MA. Alu retrotransposition-mediated deletion. J Mol Biol 2005;348:791-800.   DOI   ScienceOn
66 Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R, et al. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res 2005;33:4040-4052.   DOI   ScienceOn
67 Gilbert N, Lutz-Prigge S, Moran JV. Genomic deletions created upon LINE-1 retrotransposition. Cell 2002;110:315-325.   DOI   ScienceOn