• Title/Summary/Keyword: chicken muscle

Search Result 212, Processing Time 0.024 seconds

Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

  • Wang, Yong;He, Jianzhong;Yang, Wenxuan;Muhantay, Gemenggul;Chen, Ying;Xing, Jinming;Liu, Jianzhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1380-1387
    • /
    • 2015
  • This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time.

Monitoring of Chicken RNA Integrity as a Function of Prolonged Postmortem Duration

  • Malila, Yuwares;Srimarut, Yanee;U-chupaj, Juthawut;Strasburg, Gale;Visessanguan, Wonnop
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1649-1656
    • /
    • 2015
  • Gene expression profiling has offered new insights into postmortem molecular changes associated with meat quality. To acquire reliable transcript quantification, high quality RNA is required. The objective of this study was to analyze integrity of RNA isolated from chicken skeletal muscle (pectoralis major) and its capability of serving as the template in quantitative real-time polymerase chain reaction (qPCR) as a function of postmortem intervals representing the end-points of evisceration, carcass chilling and aging stages in chicken abattoirs. Chicken breast muscle was dissected from the carcasses (n = 6) immediately after evisceration, and one-third of each sample was instantly snap-frozen and labeled as 20 min postmortem. The remaining muscle was stored on ice until the next rounds of sample collection (1.5 h and 6 h postmortem). The delayed postmortem duration did not significantly affect $A_{260}/A_{280}$ and $A_{260}/A_{230}$ ($p{\geq}0.05$), suggesting no altered purity of total RNA. Apart from a slight decrease in the 28s:18s ribosomal RNA ratio in 1.5 h samples (p<0.05), the value was not statistically different between 20 min and 6 h samples ($p{\geq}0.05$), indicating intact total RNA up to 6 h. Abundance of reference genes encoding beta-actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyltransferase (HPRT), peptidylprolylisomerase A (PPIA) and TATA box-binding protein (TBP) as well as meat-quality associated genes (insulin-like growth factor 1 (IGF1), pyruvate dehydrogenase kinase isozyme 4 (PDK4), and peroxisome proliferator-activated receptor delta (PPARD) were investigated using qPCR. Transcript abundances of ACTB, GAPDH, HPRT, and PPIA were significantly different among all postmortem time points (p<0.05). Transcript levels of PDK4 and PPARD were significantly reduced in the 6 h samples (p<0.05). The findings suggest an adverse effect of a prolonged postmortem duration on reliability of transcript quantification in chicken skeletal muscle. For the best RNA quality, chicken skeletal muscle should be immediately collected after evisceration or within 20 min postmortem, and rapidly preserved by deep freezing.

Multiresidue Determination of Quinolones in Porcine, Chicken, and Bovine Muscle Using Liquid Chromatography with Fluorescence Detection

  • Lee, Sang-Hee;Shim, You-Sin;Kim, Hyun-Ju;Shin, Dong-Bin
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.978-984
    • /
    • 2009
  • An analytical method for the simultaneous determination of 9 quinolones (QNs) in porcine, chicken, and bovine muscles was developed and validated using liquid chromatography-fluorescence detector (LC-FLD). The samples were extracted using a liquid-liquid extraction (LLE) process. Chromatographic separation was achieved on a reverse phase $C_8$ column with a gradient elution using a mobile phase of 200 mM ammonium acetate buffer (pH 4.5) and acetonitrile (ACN). The proposed method was validated according to the Food and Drug Administration (FDA) guideline for bioanalytical assay procedures. Recoveries of QNs were 83.1-111.9% with relative standard deviations (RSDs) below 15%. Linearity within a range of 30-500 ${\mu}g/kg$ was obtained with the correlation coefficient ($R^2$) of 0.9967-0.9999. The limits of detection (LOD) were 1-16 ${\mu}g/kg$. These values were lower than the maximum residues limits (MRLs) established by the European Union (EU). The present method was successfully applied to determine QNs in edible muscles.

Determination of tylosin in edible meats by high-performance liquid chromatography (HPLC를 이용한 식육내 타이로신의 잔류분석법)

  • Kim, Gon-sup;Shin, Sun-hye;Kim, Jong-su;Ra, Do-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • A simple and rapid analytical method for the determination of tylosin in chicken, pork and muscle was established by High-Performance Liquid Chromatography(HPLC). Chicken, pork and beef muscle(5 g) were fortified by adding the $0.2{\mu}g/ml$ of standard tylosin and the drug was extracted from meats with 70% acetonitrile(ACN) and followed by liquid-liquid partition for clean-up procedure. Then $20{\mu}l$ portion of ACN elution was directly analyzed by HPLC with spectra 100 variable wavelength detector, and unfortified blank control were treated similarly. The average recovery rate of tylosin added to chicken, pork and beef muscle were $83{\pm}2.3$, $96{\pm}3.3$ and $92{\pm}1.6$(%) at the level 0.2 ppm, respectively. No tylosin residues in marketing meats. These results suggested that HPLC methodology could be acceptable for the extraction, determination and screening of tylosin residues in edible meats.

  • PDF

Effect of Raising Periods on Amino Acids and Fatty Acids Properties of Chicken Meat (사육일령이 육계의 가슴 및 다리살의 아미노산·지방산 변화에 미치는 영향)

  • Chae, Hyun-Seok;Choi, Hee-Chul;Na, Jae-Cheon;Kim, Min-Ji;Kang, Hwan-Ku;Kim, Dong-Wook;Kim, Ji-Hyuk;Jo, Soo-Hyun;Kang, Gun-Ho;Seo, Ok-Suk
    • Korean Journal of Poultry Science
    • /
    • v.39 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • This study was to investigate the amino acid, free amino acid and fatty acid composition of chicken breast muscle and legs muscle by different raising periods (30, 36 and 42 days). In amino acid composition, the glutamic acids were 3.63% at 30 days, 3.63% at 36 days and 3.54% at 42 days in the breast muscle. The glutamic acid contents in the breast and leg muscle were decreasing tendency as raising periods increased. The total free amino acids were 370.6 mg at 30 days, 235.9 mg at 36 days and 246.3 mg at 42 days in the breast muscle, and those were 470.16 at 30 days, 326.4 mg at 36 days and 321.9 mg at 42 days in the leg muscle. Total contents of free amino acids were higher in chicken legs muscle than in chicken breast muscle. The linoleic acids, the most essential fatty acid, were contained 17.84% at 30 days, 17.84% at 36 days and 20.33% at 42 days in chicken breast muscle. These results indicated that the fatty acid composition increased as raising periods increased. There were 0.69% DHA (Docosahexaenoic acid) in chicken breast muscle at 30 days, 0.96% at 36 days and 1.29% at 42 days. From these results, the DHA contents in chickens were also increased as raising periods increased.

Effect of Antemortem and Postmortem Environmental Temperatures on Biochemical Metabolism and Tenderness in Chicken Muscels (도계처리 전후의 환경온도가 계육의 생화학적 대사 및 연도에 미치는 영향)

  • 이유방
    • Korean Journal of Poultry Science
    • /
    • v.6 no.1
    • /
    • pp.24-30
    • /
    • 1979
  • 1. The effects of heat stress (38$^{\circ}C$), cold stress (4$^{\circ}C$) and extreme cold stress (-20$^{\circ}C$) before slaughter on the tenderness and postmortem glycolysis if the excised chicken breast muscle were studied Heat stress significantly (p 0.05) increased the toughness of breast muscle. Though statistically not significant, cold stress also adversely affected the tenderness. The heat-stressed birds showed higher zero hr glycogen higher zero hr pH and significantly (p 0.05) love. ultimate pH then the controls. The cold-stressed birds showed intermediate values in these parameters. Highly significant correlations. were observed between shear value and each of these three parameters. Glycolysis rate ana final moisture content were minor factors which affected the muscle tenderness to a limited extent. The slightly elevated lactate-dehydrogenase and creatine phosphokinase activities in serum and breast muscle of stressed birds failed to account for any variations in tenderness. 2. Chicken breast and thigh muscles were subjected to different environmental temperatures to determine if the phenomenon of cold shortening exists in chicken muscle. For both breast and thigh muscles, minimum shortening was observed in the 4-10$^{\circ}C$t range. Muscles held at 0$^{\circ}C$ showed a slightly higher extent of shortening than at 4$^{\circ}C$; where as muscles held at above 20$^{\circ}C$ showed a severe shortening effect. It was concluded that no apparent cold shortening was detected in chicken muscle except at 0$^{\circ}C$ and even at 0$^{\circ}C$ and even at 0$^{\circ}C$ the extent of shortening was of a small magnitude compared to bovine muscles. Since high temperature induces a much greater shortening, muscle temperature must be lowered to below 20$^{\circ}C$ as early as possible to prevent excessive muse]e shortening.

  • PDF

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

A Dtudy on the Effect of Polyamines of Korean Red Ginseng on the Growth of Cultured Chichen Embryonic Muscle Cells (홍삼 Polyamine 계 성분이 배양한 계배의 근육세포 성장에 미치는 영향)

  • 구향자;김영중
    • YAKHAK HOEJI
    • /
    • v.31 no.5
    • /
    • pp.296-301
    • /
    • 1987
  • Polyamines of Korean red ginseng were extracted with 5% trichloroacetic acid and purified by ion exchange chromatography using Dowex-50Wx8 resin. Four spots having R$_f$ values of 0.19, 0.28, 0.35, and 0.45 were detected. It was observed under microscopy that those polyamines stimulated the growth and differentiation of chicken embryonic muscle cell. The development of muscle cells from the stage of myoblast to that of myotube was found to be enhanced by those polyamines. It was also observed that those polyamines most likely lengthened, the life-span of the cultured chicken embryonic skeletal muscle cells.

  • PDF

Effects of the Chicken Sex-linked Dwarf Gene on Growth and Muscle Development

  • Chen, C.F.;Chen, Y.H.;Tixier-Boichard, M.;Cheng, P.Y.;Chang, C.S.;Tang, P.C.;Lee, Y.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.937-942
    • /
    • 2009
  • The aim of this study was to analyze the effects on growth and muscle development during the growing period of the sex-linked dwarf gene in the background of a Taiwan Country chicken strain, L2, selected for egg production. Eight crossbred males, heterozygous for the DW*DW mutation, were each backcrossed to six females of the L2 strain to produce two genotypes of BC females, either normal (DW*N+/-) or dwarf (DW*DW/-). The experiment included 251 normal and 207 dwarf pullets. The effect of the dwarf gene on body weight and shank length was highly significant from 2 weeks of age. The reduction of body weight by the dwarf gene reached 34.8% and 37.4% as compared to normal sibs at 16 and 20 weeks of age, respectively. Parameters of the growth curve were estimated: the age at inflection (TI) was higher in normal pullets (66.9 days) than in dwarf pullets (61.2 days). A significant effect of the dwarf gene on single muscle fiber cross-section area was found from 12 weeks of age onwards, whereas the dwarf gene had no effect on the total number of muscle fibers. Comparing the effect of the dwarf gene on shank length at different ages revealed an earlier effect on skeleton growth, observed from 2 weeks of age, than on muscle development, which was affected from 8 to 12 weeks of age.

Determination and Survey of Fluoroquinolones Residue in Chicken Muscle by HPLC with Fluorescence Detector (액체크로마토그래피-형광검출기를 이용한 닭고기 중 플루오로퀴놀론계 항균물질 정량분석 및 잔류조사)

  • 박은정;임지흔;이성모
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2004
  • Ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin in chicken muscle were seperated by liquid extraction and determined with high performance liquid chromatography (HPLC) with fluorescence detector. Analysis was carried out using following conditions; Cl8 column (250${\times}$4.6 mm i.d. 5 ${\mu}{\textrm}{m}$ particle size), mobile phase composed of D.W. (containing 0.4% triethylamine and phospholic acid): methanol : acetonitrile (800:100:100, v/v/v), isocratic pump at a flow rate of 1.0 $m\ell$/min and 50 ${mu}ell$ of injection volume, fluorescence detector with EX278 nm/EM.456 nm. The calibration curves of four fluoroquinolones showed linearity (${\gamma}$$^2$$\geq$0.999) at concenration range of 0.025-0.6 $\mu\textrm{g}$/ml. The recoveries in fortified chicken muscle represented more than 80% with low coefficient of variation (〈10%) for concentration range of four fluoroquinolones. The detection limits for ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were 23.5, 3.4, 3.0 and 2.5 ng/g in chicken muscle, respectively. We also monitored fluoroquinolones residue in muscle of chickens (broiler 1:227, Korean native chicken 219, laying chicken 77) using EEC-4-plate screening and HPLC conformation methods. Ten(broiler 5, Korean native chicken 5) out of the fifteen samples which were positively detected by EEC-plate screening method from 1,523 chicken meat were confirmed with ciprofloxacin and enrofloxacin by HPLC. The ranges of residual concentration were 0-0.12 ppm for ciprofloxacin and 0.01-6.79 ppm for enrofloxacin. In conclusion, our method could be applied effectively to determine four fluoroquinolones residues in chicken meat, and further survey for fluoroquinolones residue in chicken meat are needed for more effective control of fluoroquinolones used in livestock.