• Title/Summary/Keyword: chicken breast meat

Search Result 276, Processing Time 0.029 seconds

A Comparison of Meat Characteristics between Duck and Chicken Breast

  • Ali, Md. Shawkat;Kang, Geun-Ho;Yang, Han-Sul;Jeong, Jin-Yeon;Hwang, Young-Hwa;Park, Gu-Boo;Joo, Seon-Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.1002-1006
    • /
    • 2007
  • Twenty four broilers (Ross) and 24 ducklings (Cherry berry) aged 45days were stunned and killed by conventional neck cut to evaluate the meat characteristics and fatty acid composition of breast meat. Breast meats were removed from each carcass at different post-mortem times. After complete processing, the breast meats were then placed in a polythene bag and kept in a cold storage room at $4^{\circ}C$ for 7 days. The pH of meat samples at different post-mortem times, and meat characteristics and fatty composition at different storage times were evaluated. No significant differences were found in pH at different post-mortem times except at 30 min postmortem, where duck breast showed significantly lower pH than chicken breast. As expected, duck breast meat had significantly higher redness (a*), but lower lightness (L*) value compared to chicken breast. During whole storage time, the a* value remained constant in duck breast. Cooking loss (%) was higher in duck breast compared to chicken breast during the whole storage time. Shear force decreased with increasing storage time in both chicken and duck breast meat, moreover, it decreased rapidly in duck breast compared to chicken breast. The TBARS values increased with increasing storage time in both duck breast and chicken breast meat and was significantly higher in duck breast. The fatty acids (%) C14:0, C16:0, C16:1, C18:2 and C18:3 were significantly higher while C18:0 was significantly lower in duck breast compared to chicken. SFA was increased, while USFA and MUSFA decreased only in duck breast during the 7 day storage time.

Effects of Chicken Breast Meat on Quality Properties of Mackerel (Scomber japonicus) Sausage

  • Kim, Koth-Bong-Woo-Ri;Pak, Won-Min;Kang, Ja-Eun;Park, Hong-Min;Kim, Bo-Ram;Ahn, Dong-Hyun
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.122-126
    • /
    • 2014
  • This study was performed to evaluate the effects of chicken breast meat on the quality of mackerel sausages. The mackerel sausages were manufactured by additions of 5%, 7%, and 10% of chicken breast meat. The lightness of mackerel sausages showed no significant differences between the control and addition groups. The redness increased in a dose-dependent manner, but the yellowness decreased significantly with the addition of 7% chicken breast meat (p<0.05). The whiteness value of mackerel sausage added with 7% chicken breast meat was significantly higher than those of the other groups (p<0.05). In texture analysis, the hardness and adhesiveness of the mackerel sausage added with 5% of chicken breast meat showed no significant differences as compared to the control. However, the mackerel sausages added with 7% and 10% of chicken breast meat showed a dose-dependent decrease. The gel strength of the mackerel sausage added with 5% chicken breast meat was not significantly different from the control, but the addition of 7% and 10% chicken breast meat reduced the gel strength of the mackerel sausage. In sensory evaluation, the mackerel sausages prepared with chicken breast meat have higher scores in smell, taste, texture, hardness, chewiness, and overall preference as compared to the no addition group. Therefore, these results suggest that the optimal condition for improving the properties within mackerel sausages was 5% addition of chicken breast meat.

Effect of Ultrasonic Treatment on the Quality of Frying Chicken Meat (초음파 처리가 튀김 닭고기의 품질에 미치는 영향)

  • 정인철;박성하;문윤희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.256-260
    • /
    • 2001
  • This study was carried out to investigate effect of ultrasonic treatment on the quality of frying chicken meat. Moisture content of ultrasonic treated leg meat was lowest to 59.7%, moisture content of breast meat was higher than leg meat and protein content of control was higher than ultrasonic treatment. Fat content of ultrasonic treatment was higher than control and leg meat was higher than breast meat. Hunter's L (lightness) and a (redness)-value was not different between frying methods, but L-value of breast meat and a-value of leg meat was higher than leg and breast meat, respectively. Hunter's b (yellowness)-value was not different among frying chicken meats. Frying loss of ultrasonic treatment was significantly lower than control, water holding capacity was higher than control. VBN content of ultrasonic treatment was comparatively higher than control, TBA number of ultrasonic treatment was highest to 0.78mg malonaldehyde/kg. Hardness, springiness and cohesiveness of frying chicken meat was not different between frying methods, but difference of chicken muscle parts were significantly showed. Chewiness was not different among frying chicken meats and shear force value of control breast meat was lowest to 1.9kg. In case of sensory score, aroma and taste of frying chicken meat were out different between frying methods, but texture, juiciness and palatability of ultrasonic treatment were higher than control and that of breast meat were higher than leg meat.

  • PDF

Effect of ultrasound treatment on the quality properties of chicken breast meat and the broth from Korean chicken soup (Baeksuk)

  • Jung, Samooel;Jo, Kyung;Lee, Sunmin;Choi, Yun-Sang
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.539-548
    • /
    • 2019
  • This study investigated the influence of ultrasound treatment on the quality properties of chicken breast meat and the broth from Korean chicken soup (Baeksuk). In this study, the internal temperature, malondialdehyde content, textural profile, color, dry matter, protein content, phenolic content and sensory properties of chicken breast meat broth from chicken soup with ultrasound treatment were analyzed. The chicken, plants, salt, and water were vacuum packaged in a retort pouch. The chicken soup was manufactured with ultrasound treatment (45 kHz and $1.6W\;cm^{-2}$) in a water bath at $85^{\circ}C$. The texture properties, color, and lipid oxidation of the chicken breast meat from the chicken soup were not affected by the ultrasound treatment. There was no significant difference in the lipid oxidation in the broth of the chicken soup between the control and ultrasound treatment. The dry matter and crude protein contents of the broth were significantly increased by the ultrasound treatment. The broth flavor of the chicken soup manufactured with the ultrasound treatment received a higher score than that of the control in the sensory analysis. There were no differences in the sensory properties of the chicken breast meat from the chicken soup between the control and ultrasound treatment Therefore, the broth quality of the chicken soup can be improved by heating with ultrasound treatment. Additionally, to apply ultrasound technology to the production chicken breast meat and the broth from chicken soup, it is necessary to further study the quality characteristics of the breast meat and broth according to various frequencies and strengths.

Effect of Ultrasonic Treatment on Physicochemical Properties and Palatability of Cooked Chicken Meat (초음파 처리가 가열 계육의 이화학적 성질 및 기호성에 미치는 영향)

  • 박충균;박성하;전덕수;김현대;문윤희;정인철
    • Food Science of Animal Resources
    • /
    • v.21 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • This study was carried out to investigate the effect of ultrasonic treatment on physicochemical and sensory properties of cooked chicken meat. Moisture content of ultrasonic treated breast meat was higher than that of control, fat content of control of breast and leg meat were higher than that of ultrasonic treatment, and protein of control of breast meat was higher than that of ultrasonic treatment. Hunters L(lightness)-and a(redness)-value were not different between cooking methods, L-value of breast meat and a-value of leg meat were higher without regard to cooking method. Hunterb (yellowness)-value was not different among cooking chicken meats. Cooking yield was not different between cooking methods, pH of ultrasonic treated chicken meats were higher than that of control. Water holding capacity and salt soluble protein extractability of ultrasonic treated breast meat were greater than that of control. Water soluble protein extractability of ultrasonic treated leg meat was higher than that of control, and shear force value was not different between cooking methods. Hardness, cohesiveness and gumminess were not different between cooking methods and parts of muscle. Springiness of ultrasonic treated leg meat was greater than that of control and chewiness of breast meat was higher than that of leg meat. Aroma, texture, juiciness and overall acceptability were not different between cooking methods, taste of ultrasonic treated leg meat was higher than that of control. In addition, the sensory scores of parts of muscle were affected greater than that of cooking methods.

  • PDF

Use of Chicken Meat and Processing Technologies

  • Ahn, D.U.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.1
    • /
    • pp.45-54
    • /
    • 2004
  • The consumption of poultry meat (chicken and turkey) grew the most during the past few decades due to several contributing factors such as low price, product research and development, favorable meat characteristics, responsive to consumer needs, vertical integration and industry consolidation, new processing equipments and technology, and aggressive marketing. The major processing technologies developed and used in chicken processing include forming/restructuring, tumbling, curing, smoking, massaging, injection, marination, emulsifying, breading, battering, shredding, dicing, and individual quick freezing. These processing technologies were applied to various parts of chicken including whole carcass. Product developments using breast, thigh, and mechanically separated chicken meat greatly increased the utilization of poultry meat. Chicken breast became the symbol of healthy food, which made chicken meat as the most frequent menu items in restaurants. However, the use of and product development for dark meat, which includes thigh, drum, and chicken wings were rather limited due to comparatively high fat content in dark meat. Majority of chicken are currently sold as further processed ready-to-cook or ready-to-eat forms. Major quality issues in chicken meat include pink color problems in uncured cooked breast, lipid oxidation and off-flavor, tenderness PSE breast, and food safety. Research and development to ensure the safety and quality of raw and cooked chicken meat using new processing technologies will be the major issues in the future as they are now. Especially, the application of irradiation in raw and cooked chicken meat products will be increased dramatically within next 5 years. The market share of ready-to-eat cooked meat products will be increased. More portion controlled finished products, dark meat products, and organic and ethnic products with various packaging approaches will also be introduced.

Comparison of Quality Traits of Breast Meat from Commercial Broilers and Spent Hens in Sri Lanka

  • Lakshani, Pubudu;Jayasena, Dinesh D.;Jo, Cheorun
    • Korean Journal of Poultry Science
    • /
    • v.43 no.2
    • /
    • pp.55-61
    • /
    • 2016
  • With the aim of investigating the differences in the quality traits of breast meat between spent hen and broiler chicken, the physicochemical characteristics, fatty acid profile and sensory attributes of breast meat from the two chicken types were assessed. A higher protein content and a lower moisture content were found in breast of spent hen compared to that of commercial broilers (P<0.05). No significant differences in crude fat and ash contents were detected between commercial broilers and the older spent hens (P>0.05). Spent hens showed a significantly lower pH value than did commercial broilers. Spent hen meat had a higher $L^*$ value than broiler chicken meat did (P<0.05). However, $a^*$ and $b^*$ values of breast meat were similar between spent hens and commercial broilers. Water holding capacity values measured in the breast meat were comparable between the two types of chicken used in this study (P>0.05). However, spent hen meat showed a higher cooking loss value than did broiler meat (P<0.05). Total polyunsaturated fatty acid content was significantly higher in spent hen meat compared to broiler meat, in particular eicosapentaenoic acid and docosahexaenoic acid. Nevertheless, sensory characteristics of breast meat were comparable between spent hen and broiler chicken. This information can help consumers to understand better the nutritive value and important quality traits of breast meat from commercial broilers and spent hens.

The Comparison between Tanzanian Indigenous (Ufipa Breed) and Commercial Broiler (Ross Chicken) Meat on the Physicochemical Characteristics, Collagen and Nucleic Acid Contents

  • Mussa, Ngassa Julius;Kibonde, Suma Fahamu;Boonkum, Wuttigrai;Chankitisakul, Vibuntita
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.833-848
    • /
    • 2022
  • The objective of this study was to characterize the meat quality traits that affect the texture and savory taste of Ufipa indigenous chickens by comparing the proximate composition, physical characteristics, collagen, and nucleic acid contents with those of commercial broilers. It was found that Ufipa chicken breast and thigh meat had a higher protein content (p<0.05) than broiler chicken meat, whereas the fat content was lower (p<0.01). The moisture content of thigh meat was lower in Ufipa chicken meat than in broiler chicken meat (p<0.05). Regarding meat color, broiler chickens had considerably higher L* and b* than Ufipa chickens in both the breast and the thigh meat, except for a* (p<0.01). Regarding water holding capacity, Ufipa chicken breast exhibited higher drip loss but lower thawing and cooking losses than broiler chicken (p<0.01). In contrast, its thigh meat had a much lower drip and thawing losses but higher cooking losses (p<0.01). The shear force of Ufipa chickens' breasts and thighs was higher than that of broiler chickens (p<0.05), while the amount of total collagen in the thigh meat was higher than that of broiler chickens (p<0.05). Additionally, the inosine-5'-monophosphate (IMP) of Ufipa chicken breast and thigh meat was higher than that of broiler meat (p<0.05). The principal component analysis of meat quality traits provides a correlation between the proximate and physical-chemical prosperties of both breeds with some contrast. In conclusion, the present study provides information on healthy food with good-tasting Ufipa indigenous chickens, which offer a promising market due to consumers' preferences.

Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast

  • Karunanayaka, Deshani S.;Jayasena, Dinesh D.;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.58 no.7
    • /
    • pp.27.1-27.8
    • /
    • 2016
  • Background: Studies on prevalence of pale, soft, exudative (PSE) condition in Sri Lankan poultry industry is minimal. Hence, the objective of present study was to determine the incidence of PSE chicken meat in a commercial meat processing plant and to find out its consequences on meat quality traits of roasted chicken breast. Method: A total of 60 breast fillets were randomly selected, evaluated based on color L* value, and placed into 1 of 2 categories; PSE (L* > 58) or normal meat ($L*{\leq}58$). A total of 20 breast fillets (10 PSE and 10 normal) were then analyzed for color, pH, and water holding capacity (WHC). After processing those into roasted chicken breast, cooking loss, color, pH, WHC, and texture values were evaluated. A sensory evaluation was conducted using 30 untrained panelists. Results: The incidence of PSE meat was 70 % in the present experiment. PSE fillets were significantly lighter and had lower pH values compared with normal fillets. Correlation between the lightness and pH was negative (P < 0.05). Although there was no significant difference in color, texture, and WHC values between the 2 groups after processing into roasted chicken breast (P > 0.05), an approximately 3 % higher cooking loss was observed in PSE group compared to its counterpart (P < 0.05). Moreover, cooking loss and lightness values showed a significant positive correlation. Nevertheless, there were no significant differences in sensory parameters between the 2 products (P > 0.05). Conclusions: These results indicated that an economical loss can be expected due to the significantly higher cooking loss observed in roasted breast processed from PSE meat.

Effect of Ultrasound Treatment on the Quality, Amino Acid and Fatty Acid Composition of Fried Chicken (초음파 처리가 튀김 닭고기의 품질, 아미노산 및 지방산 조성에 미치는 영향)

  • Jung In-Chul;Yang Jong-Bum;Hyun Jae-Suk;Lee Jong-Ho;Moon Yoon-Hee
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • This study was carried out to investigate the effect of ultrasound treatment on the quality, amino acid and fatty acid composition of fried chicken meat The moisture content of raw chicken meat was higher than fried chicken meat, but the crude protein and fat were lower than those of fried chicken meat The moisture and crude fat of ultrasonic fried chicken meat were higher than those of control. The crude protein of breast meat was higher than leg meat, but the moisture and crude fat were lower than leg meat The ultrasonic treatment did not affect on calorie of the fried chicken meat The pH of leg meat was higher than breast meat, and the fried loss of breast meat was higher than leg meat Frying loss of the leg meat was higher than that of control when ultrasonic treated The Hunters $L^{\ast}$ value of ultrasonic treated breast meat was higher than control, but the leg meat were not significantly different between ultrasonic treatment and control. The $a^{\ast}$ value of leg meat was higher than breast meat, and $b^{\ast}$ value of breast meat was higher than leg meat And the $b^{\ast}$ value of ultrasonic treatment was higher than control. The glutamic acid and aspartic acid were major amino acids in chicken meat The palmitic acid $(C_{16:0})$ and oleic acid $(C_{18:1})$ by fried were decreased, and the linoleic acid $(C_{18:2})$ was increased But the fatty acid composition by ultrasonic treatment were not changed.