본 논문에서는 흉부 X선 영상으로부터 폐 종류 음영을 검출하기 위한 필터를 예측해서 바람직하게 평가하기 위한 방법을 제안한다. 더욱이 그 평가방법을 이용해서 이전부터 제안한 다중해상도 라플라시안-가우시안 필터의 평가를 행한다. 전문의의 진단보조 혹은 종합자동진단시스템의 구성요소로서 필터가 행하는 역할을 고려한 후에 필터가 만족해야할 조건 및 그 조건을 만족한 경우에 있어서 몇가지 성능평가 척도를 명확히 한다. 제안한 평가방법을 통해서 다중해상도 필터가 단일해상도 필터에 비해 높은 성능을 갖게됨을 명확히 한다.
에너지 흉부 단순 X선 영상으로부터 폐 종류 음영을 검출하기 위한 필터를 예측해서 성능좋게 평가하기 위한 방법을 제안한다. 더욱이 그 평가방법을 이용해서 기존에 제안된 다중 해상도 ${\nabla}^{2}G$ 필터의 평가를 행한다. 전문의의 진단보조 혹은 총합자동진단시스템의 구성요소로서 필터가 수행한 역할을 고려한 후, 필터가 만족해야만 하는 조건 및 그 조건을 만족한 경우에 있어서 몇가지 성능평가 척도를 명확히 한다. 제안한 평가방법을 통해서 다중해상도 필터가 단일해상도 필터에 비해 좋은 성능을 나타내고 있음을 명확히 한다.
To inquire its usefulness of the clinical application of intelligent replenishment system of automatic X-ray film processor based on film density, we processed the serial 300 sheets of radiographic film of chest [$14{\times}14"$, HR-C type] and bone [elbow & ankle($8{\times}10"$), skull($10{\times}12"$), hand & foot($11{\times}14"$), pelvis($14{\times}17"$), HR-G type, 68, 70, 77, 85 sheets respectively]. We analyzed the characteristic corves, relative speeds, average gradients and base plus fog densities every twenty five sheets. We also evaluated the developer and fixer replenishment volumes every that time. In the chest and bone radiograph two all, the characteristic curves were little change, and the relative speeds, average gradients and base plus fog densities were within the maximum control limits. The average developer replenishment volumes were about 43m1/sheet and 39m1/sheet respectively. It brings decreased results about 29% in comparison with the conventional replenishment system. In our experiences, we conclude that the intelligent replenishment system of automatic X-ray film processor based on film density maintains image quality consistently, decreases also the replenishment volumes. Therefore, this system will be resulted in economic and environmental effects, and solve problems of over and low replenishment volume.
This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).
The purpose to recognize change of average pixel value of acquisition image by control panel's density and right set up method of speed (sensitivity) and exposure dose(mAs) change that dose in purpose digital flatpanel-detector. X -ray generator DHF-158H2(Hitachi, Japan). Detector CXDI 4OG(Canon, Japan), 12 : 1 grid and exposure ray 135 kVp, 250 mA, 10 ms. focus-detector distance 180 cm and used AEC mode. DICOM reflex analysis program used image J that is digital reflex analysis program that offer in United States America National Health Center(National Institutes of Health : NlH) phantom used chest phantom(Anthromorphic : Flukebrome.medicaI USA). An experiment chest phantom that consist by formation equivalence material use because density value( -3${\sim}$+3) in X-ray control panel and seep that is speed step(slow, medium, fast) each control experimentalize. image analysis reflex neted through an experiment using image j each image compare. These was change in dose according to slow, medium, fast and density's change in an experiment result. According to detector sensitivity and density condition set, dose was relationship dissimilarity 500% from 200%. The dose came highest when is density +3 to slow. and dose more increases gray scale's extent could know that rise. Could know whether how equipment set is important through this experiment. cause of disease which change by digital radiography system forward is thought to increase more, it is considered that suitable education by this and continuous interest about equipment need absolutely.
흉부의 폐질환으로 폐암발생은 꾸준히 증가하고 있다. 일차적인 폐암진단 방법에는 흉부X선영상이다. 흉부X선영상 이용하여 폐암진단을 하기 위해서는 임상경험이 풍부한 의사가 필요하다. 그러나 풍부한 경험을 가진 의사라도 오진이 발생할 수 있고 이한 폐암의 조기진단과 생존률을 낮게 한다. 본 논문에서는 주성분분석을 이용하여 학습영상의 데이터베이스와 질병이 있는 흉부영상을 진단함으로써 컴퓨터보조진단의 기반을 마련하고자 한다. 이를 의사가 진단하기 전의 예비판독의 단계로 이용한다면 오진으로 인한 환자의 조기 진단률의 감소를 줄일 수가 있다. 실험은 정상흉부X선영상과 악성폐암인 기관지암(Bronchogenic Carcinoma)과 양성종양인 육아종(Granuloma)으로 실험하였다. 영상은 주성분분석 후 정상영상과 질환 영상의 고유영상을 추출하고 상호 비교한 뒤 인식효율을 비교하였다. 결과로는 정상영상과 질환영상간의 인식률은 높았으나 질환간의 인식효율은 정상에 비해 다소 떨어지는 것으로 나타났다. 흉부질환간의 인식효율을 높이기 위해서 관련 알고리즘에 관한 연구가 계속 이어진다면 컴퓨터보조진단에 좋은 연구기반이 되리라 생각한다.
본 연구는 디지털 흉부 방사선 영상에서 한국인 성인 남성을 대상으로 자세(흉부 후-전과 전-후 촬영)와 연령에 따른 심장 크기 및 심흉비의 정상범위와 자세 및 연령 변화에 따른 상호 호환할 수 있는 변환율을 제시하고자 한다. 2014년 1월부터 12월까지 건강검진센터에서 같은 날에 흉부 후-전 촬영(chest PA)과 흉부 저선량 전산화단층촬영을 실시한 수진자 중 정상으로 판독된 1,300명에서 연구 목적에 적합한 남성 1,024명을 대상으로 하였다. 심장 크기(CS)와 심흉비(CTR) 측정은 Danzer의 방법을 이용하였다. 본 연구 결과, 한국 남성의 Chest PA 및 AP영상에서 CS와 CTR의 정상범위는 Chest PA의 경우 CS 135.48 mm, CTR 43.99%이었으며, Chest AP 영상에서 CS는 155.96 mm, CTR은 51.75%로 나타났다. CS와 CTR의 평균값 차이는 통계적으로 유의하였다(p<0.01). Chest PA와 AP영상에서 심장 좌 우측은 통계적으로 유의한 차이가 없었다(p>0.05). CS의 경우는 Chest PA(p>0.05)와 Chest AP(p<0.05)에서 통계적 유의성의 차이를 보였다. 흉곽크기와 CTR은 Chest PA와 AP 모두에서 연령변화에 따른 통계적으로 유의한 평균값의 차이를 보였다(p<0.01). 본 연구 결과 Chest PA보다 Chest AP영상에서 CS는 약 15%, CTR은 17% 확대되었고, 모든 연령에서 자세변화에 따른 CS와 CTR은 약 10%의 차이를 보였다.
The aim of this study was to set up the optimal exposure condition according to detector type considering image quality (IQ) with radiation dose in chest digital radiography. We used three detector type such as flat-panel detector (FP) and computed radiography (CR), and charge-coupled device (CCD). Entrance surface dose (ESD) was measured at each exposure condition combined tube voltage with tube current using dosimeter, after attaching on human phantom, it was repeated 3 times. Phantom images were evaluated independently by three chest radiologists after blinding image informations. Standard exposure condition using each institution was 117 kVp-AEC at FP and 117 kVp-8 mAs at CR, and 117 kVp-8 mAs at CCD. Statistical analysis was performed by One way ANOVA (Dunnett T3 test) using SPSS ver. 19.0. In FP, IQ scores were not significant difference between 102 kVp-4 mAs and 117 kVp-AEC (28.4 vs. 31.1, p=1.000), even though ESD was decreased up to 50% ($62.3{\mu}Gy$ vs. $125.1{\mu}Gy$). In CR, ESD was greatly decreased from 117 kVp-8 mAs to 90 kVp-8 mAs without significant difference of IQ score (p=1.000, 24.6 vs. 19.5). In CCD, IQ score of 117 kVp-8 mAs was similar with 109 kVp-8 mAs (29.6 vs. 29.0), with decreasing from $320.8{\mu}Gy$ to $284.7{\mu}Gy$ (about 11%). We conclude that optimal x-ray exposure condition for chest digital radiography is 102 kVp-4 mAs in FP and 90 kVp-8 mAs in CR, and 109 kVp-8 mAs in CCD.
COVID-19를 발생시키는 SARS-CoV2 바이러스가 발생한 후 전염병은 전 세계로 확산되며, 감염 사례와 사망자의 수가 빠르게 증가함에 따라 의료자원의 부족 문제가 야기되었다. 이것을 해결하려는 방법으로 인공지능을 활용한 흉부 X-ray 검사가 일차적인 진단 방법으로 관심을 받게 되었다. 본 연구에서는 인공지능을 통한 COVID-19 판독 방식들에 대해 종합적으로 분석하는 것에 목적을 두고 있다. 이 목적을 달성하기 위해 292개의 논문을 일련의 분류 방법을 거처 수집했다. 이러한 자료들을 토대로 Accuracy, Precision, Area Under Curve(AUC), Sensitivity, Specificity, F1-score, Recall, K-fold, Architecture, Class를 포함한 성능 측정정보를 분석했다. 그 결과로 평균 Accuracy, Precision, AUC, Sensitivity, Specificity 값은 각각 95.2%, 94.81%, 94.01%, 93.5%, 93.92%로 도출되었다. 연도별 성능 측정정보는 점차 증가하는 값을 나타냈고 이 외에도 Class 수, 이미지 데이터 수에 따른 변화율, Architecture 사용 비율, K-fold에 관한 연구를 진행했다. 현재 인공지능을 활용한 COVID-19의 진단은 독자적으로 사용되기에는 여러 문제가 존재하지만, 의사의 보조수단으로써 사용됨에는 부족함이 없을 것으로 예상된다.
The purpose of this study is to improve the classification accuracy compared to the existing InceptionV3 model by proposing a new model modified with the fully connected hierarchical structure of InceptionV3, which showed excellent performance in medical image classification. The data used for model training were trained after data augmentation on a total of 1026 chest X-ray images of patients diagnosed with normal heart and Cardiomegaly at Kyungpook National University Hospital. As a result of the experiment, the learning classification accuracy and loss of the InceptionV3 model were 99.57% and 1.42, and the accuracy and loss of the proposed model were 99.81% and 0.92. As a result of the classification performance evaluation for precision, recall, and F1 score of Inception V3, the precision of the normal heart was 78%, the recall rate was 100%, and the F1 score was 88. The classification accuracy for Cardiomegaly was 100%, the recall rate was 78%, and the F1 score was 88. On the other hand, in the case of the proposed model, the accuracy for a normal heart was 100%, the recall rate was 92%, and the F1 score was 96. The classification accuracy for Cardiomegaly was 95%, the recall rate was 100%, and the F1 score was 97. If the chest X-ray image for normal heart and Cardiomegaly can be classified using the model proposed based on the study results, better classification will be possible and the reliability of classification performance will gradually increase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.