• Title/Summary/Keyword: chemotypes

Search Result 18, Processing Time 0.019 seconds

Investigation and utilization of unique natural products from endemic tree species in Taiwan

  • Chu, Fang-Hua
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.23-23
    • /
    • 2018
  • Taiwan, formerly known as Formosa, located on tropical and subtropical climate zones with abundant biological resources. According to the latest version of the Flora of Taiwan, there are 4339 species of vascular plants including 1054 endemic species. First, Taiwania (Taiwania cryptomerioides), named after its native island of Taiwan, have been isolated more than 500 secondary metabolites, including lignans, terpenoids, steroids, and flavonoids. Several of the metabolites are reported to have antibacterial, antifungal, antimite, antitermite and antitumor activities. In order to investigate plant secondary metabolic diversity toward industrial applications, we established deep transcriptome resources for non-model plants and fungi to produce terpenoid metabolites of economic importance. Second, many plants of Lauraceae have been utilized in folk medicine for their exciting bioactivities. The twigs and leaves from 27 tree species of Lauraceae grown in Taiwan were performed to evaluate potential bioactivity. The leaves of Cinnamomum osmophloeum are traditionally used in folk medicines, and many biological activities have been identified, such as antibacterial, antifungal, antitermite, antidiabetic, antihyperuricemia, antiinflammatory, and antioxidant activities. However, C. osmophloeum has nine chemotypes with various secondary metabolite profiles. In order to efficiently produce active compounds, we established the genetic markers to identify the chemotype plants. Finally, Cinnamomum kanehirae is the host of the medicinal mushroom Antrodia cinnamomea. Several in vivo and in vitro studies indicated that A. cinnamomea possesses a diverse range of biological activities. Because of the potential pharmacological application, we established the transformation system to enhance the triterpenoid contents production.

  • PDF

Population Structure of Fusarium graminearum from Maize and Rice in 2009 in Korea

  • Lee, Seung-Ho;Lee, Jung-Kwan;Nam, Young-Ju;Lee, Soo-Hyung;Ryu, Jae-Gee;Lee, Theresa
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • We performed diagnostic PCR assays and a phylogenetic analysis using partial sequences of TEF1 (translation elongation factor-1) to determine the trichothecene chemotypes and genetic diversity of F. graminearum isolates from maize and rice samples collected in 2009 in Korea. PCR using a species-specific primer set revealed a total of 324 isolates belonging to the putative F. graminearum species complex. PCR with trichothecene chemotypespecific primers revealed that the nivalenol (NIV) chemotype was predominant among the fungal isolates from rice (95%) in all provinces examined. In contrast, the predominant chemotype among the corn isolates varied according to region. The deoxynivalenol (DON) chemotype was found more frequently (66%) than the NIV chemotype in Gangwon Province, whereas the NIV chemotype (70%) was predominant in Chungbuk Province. Phylogenetic analysis showed that all DON isolates examined were clustered into lineage 7, while the NIV isolates resided within lineage 6 (F. asiaticum). Compared with previous studies, the lineage 6 isolates in rice have been predominantly maintained in southern provinces, while the dominance of lineage 7 in maize has been evident in Gangwon at a slightly reduced level.

Variation in essential oil composition and antimicrobial activity among different genotypes of Perilla frutescens var. crispa

  • Ju, Hyun Ju;Bang, Jun-Hyoung;Chung, Jong-Wook;Hyun, Tae Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.127-131
    • /
    • 2021
  • Perilla frutescens var. crispa (Pfc), a herb belonging to the mint family (Lamiaceae), has been used for medicinal and aromatic purposes. In the present study, we analyzed the variation in the chemical composition of essential oils (EOs) obtained from five different genotypes of Pfc collected from different regions. Based on principal component analysis (PCA) and hierarchical cluster analysis (HCA), we identified three groups: PA type containing perillaldehyde, PP type containing dillapiole, and 2-acetylfuran type. To assess the correlation between EO components and antimicrobial activities, we compared classification results generated by PCA and HCA based on antimicrobial activity values. The findings suggested that the major compounds obtained from EOs of Pfc are responsible for their antimicrobial activities. Chemotypes of Pfc plants are essentially qualitative traits that are important for breeders. The present findings provide potential information for breeding Pfc as an antimicrobial agent.

Genetic variability, associations, and path analysis of chemical and morphological traits in Indian ginseng [Withania somnifera (L.) Dunal] for selection of higher yielding genotypes

  • Srivastava, Abhilasha;Gupta, Anil K.;Shanker, Karuna;Gupta, Madan M.;Mishra, Ritu;Lal, Raj K.
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Background: The study was carried out to assess the genetic variability present in ashwagandha and to examine the nature of associations of various traits to the root yield of the plant. Methods: Fifty-three diverse genetic stocks of ashwagandha (Withania somnifera) were evaluated for 14 quantitative characteristics. Analysis of variance, correlation, and path coefficient analysis were performed using the mean data of 2 years. Results: Analysis of variance revealed that the genotypes differed significantly for all characteristics studied. High heritability in conjunction with high genetic advance was observed for fresh root weight, 12 deoxywithastramonolide in roots, and plant height, which indicated that selection could be effective for these traits. Dry root weight has a tight linkage with plant height and fresh root weight. Further, in path coefficient analysis, fresh root weight, total alkaloid (%) in leaves, and 12 deoxywithastramonolide (%) in roots had the highest positive direct effect on dry root weight. Conclusion: Therefore, these characteristics can be exploited to improve dry root weight in ashwagandha genotypes and there is also scope for the selection of promising and specific chemotypes (based on the alkaloid content) from the present germplasm.

Comparison of Trichothecene Biosynthetic Gene Expression between Fusarium graminearum and Fusarium asiaticum

  • Lee, Theresa;Lee, Seung-Ho;Shin, Jean Young;Kim, Hee-Kyoung;Yun, Sung-Hwan;Kim, Hwang-Yong;Lee, Soohyung;Ryu, Jae-Gee
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Nivalenol (NIV) and deoxynivalenol (DON) are predominant Fusarium-producing mycotoxins found in grains, which are mainly produced by Fusarium asiaticum and F. graminearum. NIV is found in most of cereals grown in Korea, but the genetic basis for NIV production by F. asiaticum has not been extensively explored. In this study, 12 genes belonging to the trichothecene biosynthetic gene cluster were compared at the transcriptional level between two NIV-producing F. asiaticum and four DON-producing F. graminearum strains. Chemical analysis revealed that time-course toxin production patterns over 14 days did not differ between NIV and DON strains, excluding F. asiaticum R308, which was a low NIV producer. Both quantitative real-time polymerase chain reaction and Northern analysis revealed that the majority of TRI gene transcripts peaked at day 2 in both NIV and DON producers, which is 2 days earlier than trichothecene accumulation in liquid medium. Comparison of the gene expression profiles identified an NIV-specific pattern in two transcription factor-encoding TRI genes (TRI6 and TRI10) and TRI101, which showed two gene expression peaks during both the early and late incubation periods. In addition, the amount of trichothecenes produced by both DON and NIV producers were correlated with the expression levels of TRI genes, regardless of the trichothecene chemotypes. Therefore, the reduced production of NIV by R308 compared to NIV or DON by the other strains may be attributable to the significantly lower expression levels of the TRI genes, which showed early expression patterns.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

Construction of Data System on Seed Morphological Traits and Functional Component in Tartary Buckwheat Germplasms (쓴메밀 유전자원의 종자특성과 유용성분 변이에 관한 자원 정보 구축)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Lee, Jong Nam;Kim, Ki Deog;Suh, Jong Taek;Nam, Jeong Hwan;Chang, Dong Chil;Park, Min Woo;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.446-459
    • /
    • 2020
  • This study analyzed the phenotypes and chemotypes of 74 tartary buckwheat (Fagopyrum tataricum) germplasms using principal component analysis and cluster analysis. The average seed size of tartary buckwheat germplasm was 5.2 × 3.4 mm, which is smaller than the seed size of common buckwheat. The dark browned colored ovate or elliptic shape was mostly observed in collected germplasm. The average content of rutin was 1,393 mg per 100 g dry weight (DW) in tartary buckwheat seed. Similarly, the flavonoid and polyphenol contents ranged from 253 to 2,669 and 209 to 1,823 mg, respectively, per 100 g DW in the collected germplasm. The three components (PC1, 2, and 3) of principal component analysis revealed 68.55% of the total variance of the collected accessions. Cluster analysis using descriptors showed that 74 accessions were clustered into five groups. The study showed that the most interesting resources for functional breeding programs are: Five resources (HLB1004, HLB1005, HLB1007, HLB1009, and HLB1013) due to the rich rutin, polyphenol, and flavonoid.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.