• Title/Summary/Keyword: chemopreventive agents

Search Result 134, Processing Time 0.024 seconds

The Chemopreventive Effect of Sodium Selenite on Colon Carcinogenesis in Medium-Term Multi-Organ Bioassay (다장기 중기발암성 시험법을 이용한 셀렌염의 대장암 억제효과에 대한 연구)

  • Han, Beom-Seok;Hong, Choong-Man;Shin, Dong-Hwan;Lee, Kook-Kyung;Ahn, Byeong-Woo;Jang, Dong-Deuk
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.1
    • /
    • pp.23-28
    • /
    • 2001
  • This study was conducted to assess the chemopreventive effects of sodium selenite in the rat medium-term multi-organ bioassay using a DMBDD model (DEN+MNU+BBN+DMH+DHPN). Seventy five,6-week-old, male SD rats were divided into 3 groups. The animals in group 1 received DEN(diethylnitrosamine,100 mg/kg bw, single i.p., in saline), MNU (N-methyl-nitrosourea,20 mg/kg bw, i.p.,4 times for 2 weeks), BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine, 0.2% in drinking water for 2 weeks), DMH (1,2-dimethylhydrazine, 40 mg/kg bw, s.c., in saline.4 times (or 2 weeds), and DHPN (N-bis(2-hydroxy-pro-pal)nitrosamine,0.1% in drinking water for 2 weeks), then were placed on sodium selenite (4 ppm in drinking water) for 22 weeks from weeks 4 to 26. The animals in group 2 were given DMBDD alone. The animals in group 3 were given sodium selenite alone. Animals were sacrificed at week 12 for ACF quantitative analysis and at week 26 for tumor induction. The body weights in the group 1 were significantly decreased compared with those of group 2. The tumor multiplicities of large intestine in the group 1 were significantly decreased compared with those of group 2 (P<0.05). These results indicate that sodium selenite may have a potential as chemopreventive agents of colon carcinogenesis.

  • PDF

Chemopreventive Effect of Chitosan on Rat Colon Carcinogenesis Induced by Azoxymethane (실험적 대장암 모델에서 키토산의 발암 억제효과에 관한 연구)

  • Han, Beom-Seok;Kim, Dae-Joong;Ahn, Byeong-Woo;Kim, Ki-Sok;Kang, Jin-Seok;Moon, Ji-Young;Hong, Choong-Man;Jang, Dong-Deuk
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • This study was conducted to assess the chemopreventive effects of chitosan in a rat colon carcinogenesis induced by azoxymethane (AOM). Ninety, 5-week-old, male F344 rats were divided into three groups. The animals in group 1 received subcutaneous injections of 15mg/kg AOM three times for two weeks, then were placed on powdered basal diet containing 2% chitosan for 37 weeks from weeks 3 to 40. The animals in group 2 were given AOM alone. The animals in group 3 were given 2% chitosan without prior carcinogen treatment. All animals were sacrificed at week 12 for quantitative analysis of aberrant crypt foci (ACF) and at week 40 fur analysis of tumor induction. Total numbers of ACF and AC per colon of group 1 were not significantly different from those of group 2. Tumor incidences and multiplicities of small intestine in the group 1 were significantly decreased compared with those of the group 2 (P<0.05). According to pathological diagnoses, adenocarcinoma incidence and multiplicity in the small and large intestine in the group 1 were significantly decreased compared with those of the group 2 (p<0.05). No toxic effects were observed in animals given chitosan in terms of body weights, and liver or kidney histology. These results indicate that chitosan may have a potential as chemopreventive agents of colon carcinogenesis during the postinitiation stage.

  • PDF

Antigenotoxicity and Action Mechanism of Quercetin and its Glycosides against Oxidative DNA Damage (Oxidative DNA 손상에 대한 Quercetin 및 그 배당체들의 유전독성억제효과와 작용기전)

  • 김수희;허문영
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 1999
  • Quercetin and its glycosides showed a strong free radical scavenging effect to DPPH radical generation. However, there were not big differences between quercetin aglycone and glycosides under experimental condition of this study. On the other hand, quercetin had pro-oxidant effect in bleomycin-dependent DNA assay. Quercetin aglycone and its glycosides, quercitrin inhibited $H_2$$O_2$- induced DNA damage in CHL cells. They also have an anticlastogenicity toward DNA breakage agent by radical generation like bleomycin. These results indicate that quercetin aglycone and its glycosides are capable of protecting the free radical generation induced by reactive oxygen species like $H_2$$O_2$. The mechanism of inhibition in hydrogen peroxide-induced genotoxicity may be due to their free radical scavenging properties. Therefore, quercetin aglycone and its glycosides may be useful chemopreventive agents by protecting of free radical generation which are involved in carcinogenesis and aging. However, quercetin and its glycosides must also carefully examined for pro-oxidant properties before being proposed for use in vivo.

  • PDF

Eugenol suppresses inducible cyclooxygenase-2(COX-2) expressionin lipopolysaccharide-stimulated mouse macrophage cells.

  • Kim, Sun-Suk;Oh, O-Jin;Min, Hye-Young;Lee, Youngm-Kim;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.86-86
    • /
    • 2001
  • Based on the potential inhibitors of cyclooxygenase-2 (COX-2) as anti-inflammatory or cancer chemopreventive agents, we have evaluated the active principles of COX-2 inhibition from natural products. The methanol extract of the cortex of Eugenia caryoplyllata (Myrtaceae) showed the potent inhibition of prostaglandin E$_2$(PGE$_2$) production in lipopolysaccharide (LPS)-activated RAW 264.7 cells (98.3% inhibition at the test concentration of 10 $\mu\textrm{g}$/$m\ell$) Further, hexane-soluble layer was the most active partition compared to ethyl acetate, n-butanol, and water -soluble parts. By bioassay-guided fractionation of hexane-soluble layer, eugenol was isolated and exhibited a significant suppression of PGE$_2$ production (IC$\_$50/=0.06$\mu\textrm{g}$/$m\ell$). In addition, eugenol suppressed the COX-2 gene expression in LPS-stimulated mouse macrop-hage cells. Therfore, eugenol might be a plausible lead candidate for further developing the COX-2 inhibitor as an anti-inflammatory or cancer chemopreventive agent.

  • PDF

[6]-Gingerol Inhibits Phorbol Ester-Induce d Expression of Cyclooxygenase-2 in Mouse Skin: p38 MAPK and p65/RelA as Possible Molecular Targets

  • Kim, Sue-Ok;Chun, Kyung-Soo;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.95.1-95
    • /
    • 2003
  • Ginger (Zingiber officinale Roscoe, Zingiberaceae) has a wide array of pharmacologic effects. Our previous studies have demonstrated that [6]-gingerol, a major pungent ingredient of ginger, inhibits mouse skin tumor promotion and anchorage-independent growth of cultured mouse epidermal cells stimulated with epidermal growth factor. In this study, we have investigated the molecular mechanisms underlying chemopreventive effects of [6]-gingerol on mouse skin carcinogenesis. Cyclooxygenase-2 (COX-2), a key enzyme in the formation of prostaglandins, has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. The murine COX-2 promoter contains several transcriptional elements, particularly those involved in regulating inflammatory processes. One of the essential transcription factors responsible for COX-2 induction is NF-kappa B. Topical application of [6]-gingerol inhibited the COX-2 expression through suppression of NF-kappa B activation in phorbol ester-treated mouse skin. [6]-Gingerol, through down-regulation of p38 MAPK, abrogated the DNA binding activity of NF-kappa B by blocking phosphorylation of p65/RelA at the Ser 536 residue. These findings suggest that [6]-gingerol exerts an anti-tumor promotional activity through inhibition of the p38 MAPK-NF-kappa B siganling cascade in mouse skin.

  • PDF

Induction of Phase II Enzymes and Inhibition of Cytochrome P450 Isozymes by Chitosanoligosaccharides

  • SHON, YUN-HEE;NAM, KYUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.183-187
    • /
    • 2005
  • Abstract The cancer chemopreventive potential of chitosanoligosaccharides was investigated by measuring the induction of quinone reductase and glutathione S-transferase activities and inhibition of cytochrome P450 1A1, 2B1, and 2E1 activities. Chitosanoligosaccharide I (1-${\kappa}$Da${\kappa}$Da) significantly induced glutathione S-transferase activity with a maximal 1.5-fold increase at 500 ${\mu}$g/ml, while chitosanoligosaccharide II (3-${\kappa}$Da${\kappa}$Da) (500 ${\mu}$g/ml) strongly induced quinone reductase (p<0.01) and glutathione S-transferase (p<0.005) activities. The in vitro incubation of rat liver microsomes with chitosanoligosaccharides I and II (2.5, 5, 50, and 500 ${\mu}$g/ml) showed a dose-dependent inhibiton of cytochrome P450 1A1, 2B1, and 2E1 activities. Chitosanoligosaccharide II was a more potent inhibitor of cytochrome P450 2B1 activity than chitosanoligosaccharide I. Accordingly, these findings suggest that chitosanoligosaccharides are potential chemopreventive agents.

Effects of Acori Graminei Rhizoma Aqua-acupunture Solution(AGRAS) on Induction of Cancer Chemopreventive Enzymes (석창포(石菖蒲) 약침액(藥鍼液)의 암(癌) 예방(豫防) 관련 효소 유도 효과)

  • Roh Dong-Il;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.19 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • Induction of phase II enzymes such as quinone reductase (QR) and glutathione S-transferase (GST) is considered a major mechanism of protection against initiation of carcinogenesis. The present study was performed to evaluate the chemopreventive activity of Acori Graminei Rhizoma aqua-acupuncture solution (AGRAS) and Acori Graminei Rhizoma water-extracted solution (AGRWS) by measuring the induction of phase II enzymes. AGRAS and AGRWS are potent inducers of quinone reductase activity in murine hepatoma Hepa1c1c7 cells. The levels of GSH and GST was increased sightly with AGRAS and AGRWS. These results suggest that AGRAS and AGRWS may act as blocking agents against carcinogenesis by induction of phase II enzymes.

  • PDF

Natural Products for Cancer-Targeted Therapy: Citrus Flavonoids as Potent Chemopreventive Agents

  • Meiyanto, Edy;Hermawan, Adam;Anindyajati, Anindyajati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.427-436
    • /
    • 2012
  • Targeted therapy has been a very promising strategy of drug development research. Many molecular mechanims of diseases have been known to be regulated by abundance of proteins, such as receptors and hormones. Chemoprevention for treatment and prevention of diseases are continuously developed. Pre-clinical and clinical studies in chemoprevention field yielded many valuable data in preventing the onset of disease and suppressing the progress of their growth, making chemoprevention a challenging and a very rational strategy in future researches. Natural products being rich of flavonoids are those fruits belong to the genus citrus. Ethanolic extract of Citrus reticulata and Citrus aurantiifolia peels showed anticarcinogenic, antiproliferative, co-chemotherapeutic and estrogenic effects. Several examples of citrus flavonoids that are potential as chemotherapeutic agents are tangeretin, nobiletin, hesperetin, hesperidin, naringenin, and naringin. Those flavonoids have been shown to possess inhibition activity on certain cancer cells' growth through various mechanisms. Moreover, citrus flavonoids also perform promising effect in combination with several chemotherapeutic agents against the growth of cancer cells. Some mechanisms involved in those activities are through cell cycle modulation, antiangiogenic effect, and apoptosis induction.Previous studies showed that tangeretin suppressed the growth of T47D breast cancer cells by inhibiting ERK phosphorylation. While in combination with tamoxifen, doxorubicin, and 5-FU, respectively, it was proven to be synergist on several cancer cells. Hesperidin and naringenin increased cytotoxicitity of doxorubicin on MCF-7 cells and HeLa cells. Besides, citrus flavonoids also performed estrogenic effect in vivo. One example is hesperidin having the ability to decrease the concentration of serum and hepatic lipid and reduce osteoporosis of ovariectomized rats. Those studies showed the great potential of citrus fruits as natural product to be developed as not only the source of co-chemotherapeutic agents, but also phyto-estrogens. Therefore, further study needs to be conducted to explore the potential of citrus fruits in overcoming cancer.

Two Cases of Stage IV Colorectal Cancer Patients by Combined Treatment of Rhus Vernifciflua Stokes Decoction and Chemotherapy (옻나무 전탕추출물 한방치료와 항암화학요법을 병용한 대장암 4기 환자 2례)

  • Kim, Bo-Geun;Park, Sang-Chae
    • Journal of Korean Traditional Oncology
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • Background & Objectives : Colorectal Cancer is 10% of all cancer incidence and the motality from colorectal cancer is nearly 450,000 a year. Since chemopreventive agents from Herbal medicine is hot issue recently, to prove antitumor effecicacy of Rhus vernifciflua STOKES decoction(Chijong-tang), clinical study was carried out. Here we report two patients with colorectal cancer of stage IV. One is colorectal cancer patient with liver, lung metastases underwent operation, chemotherapy. The other patient with liver metastasis underwent chemotherapy. All of two patients acquired tolerance. Methods : One patient visited Hana oriental medicine Clinic in 2010 and was treated using Chijong-tang for 17 months at Hana Oriental Clinic. The other patient visited Hana oriental medicine Clinic in 2011 and was treated using Chijong-tang for 5 months at Hana Oriental Clinic. Results : Chijong-tang showed no side effect, no more tolerance during its treatment with chemotherapy and tumor size was retarded based on CT scanning. Overall, this case report suggests that Rhus vernifciflua STOKES can be a potent cancer preventive agents for colorectal cancer but it is still required to verify the scientific and clinical evidences for Rhus vernifciflua STOKES decoction (Chijong-tang).

Free Radical Toxicology and Cancer Chemoprevention

  • Lin, Jen-Kun
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.83-88
    • /
    • 2001
  • Most reactive oxygen species (ROS) are free radicals and implicated in the development of a number of disease processes including artherosclerosis, neurodegenerative disorders, aging and cancer. ROS are byproducts of a number of in vivo metabolic processes and are formed deliberately as part of nor-mal inflammatory response. On the other hand, ROS are generated either as by products of oxygen reduction during xenobiotic metabolism or are liberated as the result of the futile redox cycling of the chemical agents including several chemical carcinogens. A better understanding of the mechanisms of free radical toxicity may yield valuable clue to risks associated with chemical exposures that leading to the development of chronic diseases including cancer. The molecular biology of ROS-mediated alterations in gene expression, signal transduction and carcinognesis is one of the important subjects in free radical toxicology. Epidemiological studies suggest that high intake of vegetables and fruits are associated with the low incidence of human cancer. Many phytopolyphenols such as tea polyphenols, curcumin, resveratrol, apigenin, genistein and other flavonoids have been shown to be cancer chemopreventive agents. Most of these compounds are strong antioxidant and ROS scavengers in vitro and effective inducers of antioxidant enzymes such as superoxide dismutatse, catalase and glutathione peroxidase in vivo. Several cellular transducers namely receptor tyrosine kinase, protein kinase C, MAPK, PI3K, c-jun, c-fos, c-myc, NFkB, IkB kinase, iNOS, COX-2, Bcl-2, Bax, etc have been shown to be actively modulated by phyto-polyphenols. Recent development in free radical toxicology have provided strong basis for understanding the action mechanisms of cancer chemoprevention.

  • PDF