• Title/Summary/Keyword: chemo-sensitivity

Search Result 11, Processing Time 0.024 seconds

LncRNA MALAT1 Depressed Chemo-Sensitivity of NSCLC Cells through Directly Functioning on miR-197-3p/p120 Catenin Axis

  • Yang, Tian;Li, Hong;Chen, Tianjun;Ren, Hui;Shi, Puyu;Chen, Mingwei
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.270-283
    • /
    • 2019
  • This study was aimed to explore if lncRNA MALAT1 would modify chemo-resistance of non-small cell lung cancer (NSCLC) cells by regulating miR-197-3p and p120 catenin (p120-ctn). Within this investigation, we totally recruited 326 lung cancer patients, and purchased 4 NSCLC cell lines of A549, H1299, SPC-A-1 and H460. Moreover, cisplatin, adriamycin, gefitinib and paclitaxel were arranged as chemotherapies, and half maximal inhibitory concentration (IC50) values were calculated to evaluate the chemo-resistance of the cells. Furthermore, mice models of NSCLC were also established to assess the impacts of MALAT1, miR-197-3p and p120-ctn on tumor growth. Our results indicated that MALAT1 and miR-197-3p were both over-expressed within NSCLC tissues and cells, when compared with normal tissues and cells (P < 0.05). The A549, H460, SPC-A-1 and SPC-A-1 displayed maximum resistances to cisplatin ($IC50=15.70{\mu}g/ml$), adriamycin ($IC50=5.58{\mu}g/ml$), gefitinib ($96.82{\mu}mol/L$) and paclitaxel (141.97 nmol/L). Over-expression of MALAT1 and miR-197-3p, or under-expression of p120-ctn were associated with promoted viability and growth of the cancer cells (P < 0.05), and they could significantly strengthen the chemo-resistance of cancer cells (P < 0.05). MALAT1 Wt or p120-ctn Wt co-transfected with miR-197-3p mimic was observed with significantly reduced luciferase activity within NSCLC cells (P < 0.05). Finally, the NSCLC mice models were observed with larger tumor size and weight under circumstances of over-expressed MALAT1 and miR-197-3p, or under-expressed p120-ctn (P < 0.05). In conclusion, MALAT1 could alter chemo-resistance of NSCLC cells by targeting miR-197-3p and regulating p120-ctn expression, which might assist in improvement of chemo-therapies for NSCLC.

Sensory Materials for DMNB

  • Kim, Jin Soo
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.81-85
    • /
    • 2016
  • Detection of DMNB by chemo sensors has been proved difficult because of their high lying LUMO level. Recently reported 4 different types of sensory materials for detection of DMNB were discussed. The focus of this review mainly lied on the sensitivity and feasibility for field use. Different strategies and approaches from different platforms for sensing DMNB is studied.

Smart Polymeric Micelles as Nanocarriers for Gene and Drug Delivery

  • Kataoka, Kazunori
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.54-55
    • /
    • 2006
  • Polymeric micelles, supramolecular assemblies of block copolymers, are useful nanocarriers for the systemic delivery of drugs and genes. Recently, novel polymeric micelles with various functions such as the targetability and stimuli-sensitivity have been emerged as promising carriers that enhance the efficacy of drugs and genes with minimal side effects. This presentation focuses our recent approach to the preparation of functional block copolymers that are useful for constructing smart micellar delivery systems in advanced therapeutics, including chemo-gene therapy. Particular emphasis is placed on the characteristic behaviors of intracellular environment-sensitive micelles that selectively exert drug activity and gene expression in live cells.

  • PDF

Knockdown of Med19 Suppresses Proliferation and Enhances Chemo-sensitivity to Cisplatin in Non-small Cell Lung Cancer Cells

  • Wei, Ling;Wang, Xing-Wu;Sun, Ju-Jie;Lv, Li-Yan;Xie, Li;Song, Xian-Rang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.875-880
    • /
    • 2015
  • Mediator 19 (Med19) is a component of the mediator complex which is a coactivator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The involvement of Med19 in sensitivity to the chemotherapeutic agent cisplatin was here investigated. We employed RNA interference to reduce Med19 expression in human non-small cell lung cancer (NSCLC) cell lines and analyzed their phenotypic changes. The results showed that after Med19 siRNA transfection, expression of Med19 mRNA and protein was dramatically reduced (p<0.05). Meanwhile, impaired growth potential, arrested cell cycle at G0/G1 phase and enhanced sensitivity to cisplatin were exhibited. Apoptosis and caspase-3 activity were increased when cells were exposed to Med19 siRNA and/or cisplatin. The present findings suggest that Med19 facilitates tumorigenic properties of NSCLC cells and knockdown of Med19 may be a rational therapeutic tool for lung cancer cisplatin sensitization.

Involvement of EBV-encoded BART-miRNAs and Dysregulated Cellular miRNAs in Nasopharyngeal Carcinoma Genesis

  • Xie, Yuan-Jie;Long, Zhi-Feng;He, Xiu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5637-5644
    • /
    • 2013
  • The definite molecular mechanisms underlying the genesis of nasopharyngeal carcinomas (NPCs) remain to be completely elucidated. miRNAs are small non-coding RNAs which are implicated in cell proliferation, apoptosis, and even carcinogenesis through negatively regulating gene expression post-transcriptionally. EBV was the first human virus found to express miRNAs. EBV-encoded BART-miRNAs and dysregulated cellular miRNAs are involved in carcinogenesis of NPC by interfering in the expression of viral and host cell genes related to immune responses and perturbing signal pathways of proliferation, apoptosis, invasion, metastasis and even radio-chemo-therapy sensitivity. Additional studies on the roles of EBV-encoded miRNAs and cellular miRNAs will provide new insights concerning the complicated gene regulated network and shed light on novel strategies for the diagnosis, therapy and prognosis of NPC.

Tanshinone IIA Reverses the Malignant Phenotype of SGC7901 Gastric Cancer Cells

  • Xu, Min;Cao, Fa-Le;Li, Nai-Yi;Liu, Yong-Qiang;Li, Yan-Peng;Lv, Chun-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • Backgrounds: Tanshinone IIA (TIIA), a phenanthrenequinone derivative extracted from Salvia miltiorrhiza BUNGE, has been reported to be a natural anti-cancer agent in a variety of tumor cells. However, the effect of TIIA on gastric cancer cells remains unknown. In the present study, we investigated the influence of TIIA on the malignant phenotype of SGC7901 gastric cancer cells. Methods: Cells cultured in vitro were treated with TIIA (0, 1, 5, $10{\mu}g/ml$) and after incubation for different periods, cell proliferation was measured by MTT method and cell apoptosis and cell cycling were assessed by flow cytometry (FCM). The sensitivity of SGC7901 gastric cancer cells to anticancer chemotherapy was investigated with the MTT method, while cell migration and invasion were examined by wound-healing and transwell assays, respectively. Results: TIIA (1, 5, $10{\mu}g/ml$) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that TIIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. TIIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that TIIA markedly decreased migratory and invasive abilities of SGC7901 cells. Conclusions: TIIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

  • Tao, Manlan;Xu, Feng;Li, Yueting;Xu, Quanqing;Chang, Yanbing;Wu, Zaisheng;Yang, Yun-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1968-1972
    • /
    • 2010
  • Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt-Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from $2.35\times10^{-5}$ to $2.39\times10^{-3}$ M with a detection limit of $7.83\times10^{-6}$ M at optimum conditions. This sensor displayed high sensitivity and long-term stability.

Perfusion Computed Tomography in Predicting Treatment Response of Advanced Esophageal Squamous Cell Carcinomas

  • Li, Ming-Huan;Shang, Dong-Ping;Chen, Chen;Xu, Liang;Huang, Yong;Kong, Li;Yu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.797-802
    • /
    • 2015
  • Background: The purpose of this study was to prospectively evaluate the predictive value of perfusion computed tomography (CT) for response of local advanced esophageal carcinoma to radiotherapy and chemotherapy. Materials and Methods: Before any treatment, forty-three local advanced esophageal squamous cell carcinomas were prospectively evaluated by perfusion scan with 16-row CT from June 2009 to January 2012. Perfusion parameters, including perfusion (BF), peak enhanced density (PED), blood volume (BV), and time to peak (TTP) were measured using Philips perfusion software. Seventeen cases received definitive radiotherapy and 26 received concurrent chemo-radiotherapy. The response was evaluated by CT scan and esophagography. Differences in perfusion parameters between responders and non-responders were analyzed, and ROCs were used to assess predictive value of the baseline parameters for treatment response. Results: There were 25 responders (R) and 18 non-responders (NR). Responders showed significantly higher BF (R:34.1 ml/100g/min vs NR: 25.0 ml/100g/min, p=0.001), BV (23.2 ml/100g vs 18.3 ml/100g, p=0.009) and PED (32.5 HU vs 28.32HU, P=0.003) than non-responders. But the baseline TTP (R: 38.2s vs NR: 44.10s, p=0.172) had no difference in the two groups. For baseline BF, a threshold of 36.1 ml/100g/min achieved a sensitivity of 56%, and a specificity of 94.4% for detection of clinical responders from non-responders. Conclusions: The results suggest that the perfusion CT can provide some helpful information for identifying tumors that may respond to radio-chemotherapy.

Combined Treatment with 2-Deoxy-D-Glucose and Doxorubicin Enhances the in Vitro Efficiency of Breast Cancer Radiotherapy

  • Islamian, Jalil Pirayesh;Aghaee, Fahimeh;Farajollahi, Alireza;Baradaran, Behzad;Fazel, Mona
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8431-8438
    • /
    • 2016
  • Doxorubicin (DOX) was introduced as an effective chemotherapeutic for a wide range of cancers but with some severe side effects especially on myocardia. 2-Deoxy-D-glucose (2DG) enhances the damage caused by chemotherapeutics and ionizing radiation (IR) selectively in cancer cells. We have studied the effects of $1{\mu}M$ DOX and $500{\mu}M$ 2DG on radiation induced cell death, apoptosis and also on the expression levels of p53 and PTEN genes in T47D and SKBR3 breast cancer cells irradiated with 100, 150 and 200 cGy x-rays. DOX and 2DG treatments resulted in altered radiation-induced expression levels of p53 and PTEN genes in T47D as well as SKBR3 cells. In addition, the combination along with IR decreased the viability of both cell lines. The radiobiological parameter (D0) of T47D cells treated with 2DG/DOX and IR was 140 cGy compared to 160 cGy obtained with IR alone. The same parameters for SKBR3 cell lines were calculated as 120 and 140 cGy, respectively. The sensitivity enhancement ratios (SERs) for the combined chemo-radiotherapy on T47D and SKBR3 cell lines were 1.14 and 1.16, respectively. According to the obtained results, the combination treatment may use as an effective targeted treatment of breast cancer either by reducing the single modality treatment side effects.

Overcoming 5-Fu Resistance of Colon Cells through Inhibition of Glut1 by the Specific Inhibitor WZB117

  • Liu, Wei;Fang, Yong;Wang, Xiao-Tong;Liu, Ju;Dan, Xing;Sun, Lu-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7037-7041
    • /
    • 2014
  • Background: 5-Fluorouracil (5-FU) is the most commonly used drug in colon cancer therapy. However, despite impressive clinical responses initially, development of drug resistance to 5-Fu in human tumor cells is the primary cause of failure of chemotherapy. In this study, we established a 5-Fu-resistant human colon cancer cell line for comparative chemosensitivity studies. Materials and Methods: Real time PCR and Western blotting were used to determine gene expression levels. Cell viability was measured by MTT assay. Glucose uptake was assess using an Amplex Red Glucose/Glucose Oxidase assay kit. Results: We found that 5-Fu resistance was associated with the overexpression of Glut1 in colon cancer cells. 5-Fu treatment at low toxic concentration induced Glut1 expression. At the same time, upregulation of Glut1 was detected in 5-Fu resistant cells when compared with their parental cells. Importantly, inhibition of Glut1 by a specific inhibitor, WZB117, significantly increased the sensitivity of 5-Fu resistant cells to the drug. Conclusions: This study provides novel information for the future development of targeted therapies for the treatment of chemo-resistant colon cancer patients. In particular it demonstrated that Glut1 inhibitors such as WZB117 may be considered an additional treatment options for patients with 5-Fu resistant colon cancers.