• Title/Summary/Keyword: chemistry concept understanding

Search Result 66, Processing Time 0.018 seconds

Contraction of Alpha-nickel Hydroxide Layers by Excess Coulombic Attraction of Anions (전기화학적으로 형성된 알파 상 니켈 수산화물의 층간 거리에 미치는 음이온의 영향 연구)

  • Kim, Gwang-Beom;Ganesh Kumar, V.;Bae, Sang-Won;Lee, Jae-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.141-152
    • /
    • 2006
  • In this study computer assisted instruction materials for the ‘Solution' chapter in high school chemistry II textbook were developed based on a view of particle and analyze the effect of the materials on 10th and 11th high school students. The contents of developed materials are dissolution, vapor pressure, the change of boiling point and freezing point, osmosis, and so on which are the major contents of Solution chapter in high school chemistry II textbook. Materials were developed with using animation and simulation for students understanding of the phenomena with a particle view point. Many phenomena in a solution were not simplified by colligative property of solution, but tried to explain by the concept of attraction between solute and solvent molecules. This computer assisted learning materials were developed using Flash 5.0 and Flash 6.0 Action Script. Educational effects of the materials on 10th and 11th grade students represented statistically meaningful increase of concept understanding. Especially the materials were effective to the transition stage or formal stage students in 10th grade and formal stage or the natural science major students in 11th grade.

Analysis of Problems in the Submicro Representations of Acid·Base Models in Chemistry I and II Textbooks of the 2009 & 2015 Revised Curricula (2009 개정교육과정과 2015 개정교육과정의 화학 I 및 화학 II 교과서에서 산·염기 모델의 준미시적 표상에 대한 문제점 분석)

  • Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.1
    • /
    • pp.19-29
    • /
    • 2020
  • We analyzed the representations of acid-base models in 4 kinds of Chemistry I and 4 kinds of Chemistry II textbooks of the 2009 revised curriculum, and 9 kinds of Chemistry I textbooks and 6 kinds of chemistry II textbooks of the 2015 revised curriculum in this study. The problems of the textbook were divided into the problems of definitions and the representations of the logical thinking. As a result of the study, the lack of the concept of chemical equilibrium had a problem with the representation of reversible reactions in the definition of the Brønsted-Lowry model in the Chemistry I textbooks of 2009 revised curriculum, it also appeared to persist in Chemistry I textbooks of 2015 revised curriculum which contains the concept of chemical equilibrium. The representations of logical thinking were related to particle kinds of conservation logic, combinational logic, particle number conservation logic, and proportion logic. There were few problems related to representation of logical thinking in Chemistry I textbook in 2009 revision curriculum, but more problems of representations related to logics are presented in Chemistry I textbooks in 2015 revision curriculum. Therefore, as the curriculum is revised, the representations of chemistry textbooks related to acid and base models need to be changed in a way that can help students' understanding.

The Effects of Analyzing Mapping Errors in Concept Learning on the Three States of Matter with Analogy (비유를 사용한 물질의 세 가지 생태 개념 학습에서 대응 오류 분석 활동의 효과)

  • Kim, Kyung-Sun;Byun, Ji-Sun;Shin, Eun-Ju;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.778-786
    • /
    • 2007
  • This study investigated the effects of analyzing mapping errors on conceptual understanding, mapping understanding and perceptions of the instructions in learning chemistry concept with analogy. Seventh graders (N=121) at two middle schools were assigned to the comparison and the treatment groups, and were taught about 'states of matter and arrangement of molecules.' The students in the comparison group were taught in the Teaching-With-Analogy (TWA) model, while those in the treatment group Were taught in the instructional model that changed 'mapping similarity' and 'indicating difference' of the TWA model into 'analyzing mapping errors.' Analysis of the results revealed that the scores of the conception test and the mapping test for the treatment group were significantly higher than those far the comparison group regardless of field dependence-independence. It was also found that most students in the two groups positively perceived the instructions with analogy, but the students in the treatment group had difficulties in analyzing mapping errors, Educational implications are discussed.

Pre-service Chemistry Teachers’ Understanding of the Boiling Process of a Liquid Mixture (액체 혼합물의 끓음에 대한 예비 화학교사의 이해)

  • Park, Kira;Yoon, Heesook
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.454-465
    • /
    • 2015
  • The goal of this study is to investigate pre-service chemistry teachers’ understanding of the boiling process of a liquid mixture. We surveyed 65 students in the chemistry program of the College of Education about the boiling point of a 50%(by mole) ethanol aqueous solution and the temperature changes during heating. We then interviewed 9 of these students. According to the survey results, the percent of the pre-service teachers who thought that the boiling point of the ethanol solution would be ‘between the boiling points of ethanol and water (78-100 ℃)’ and ‘the same as that of ethanol’ were 52.3% and 35.4%, respectively. The majority of those who stated the former explained that the boiling point of the ethanol solution increased due to the effects of attraction or blocking by water molecules. Most of those who believed the latter explained that physical properties such as the boiling point would not be changed by the addition of water. With regard to the temperature change during heating, 69.2% of the teachers thought that the temperature would increase gradually while boiling, which some thought resulted from the increasing amount of water in the solution as the ethanol boiled off. Others thought that two temperature plateaus would be observed as each component of the liquid mixture underwent phase transition at its specific boiling point. When asked about the particle model of the gas phase during the boiling and evaporation process, some students drew both ethanol and water during evaporation but only ethanol when boiling. We discussed several alternative concepts of pre-service chemistry teachers about the boiling process of liquid mixtures and ways to improve their understanding.

An Analysis of Concept Description and Model and Student Understanding About Ionic Compound in Textbooks Developed Under the 2009 Revised National Curriculum (2009 개정 교육과정에 따른 교과서에서 이온 화합물의 설명 개념과 모형 및 학생 이해도 분석)

  • Shin, He Young;Woo, Ae Ja
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.362-373
    • /
    • 2016
  • In this study, ionic compound in the science textbooks developed under the 2009 revised national curriculum were analyzed in terms of the scientific concept and model description and the student understanding through the questionnaires. Analysis of textbooks was performed for science2 of middle school and chemistry I & II of high school. Questionnaire was carried out with 194 students including middle school 2nd grade and high school 1st-3rd grade. The results are as follows: First, as a result of analysis of textbooks, scientific concepts and models used to explain the ionic compound showed differences depending on the types of textbooks. In addition, scientific models were provided with or without explanation for the scientific concepts. Second, analysis of the questionnaire showed that students didn’t properly understood scientific concepts and models in the ion formation, stoichiometric ratio between ions.

Analysis of Students Use of Multimodal Representations in a Science Formative Assessment (Assessing Pupils' Progress, APP) Task in the UK

  • Cho, Hye Sook;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.211-217
    • /
    • 2017
  • The purpose of this study was to examine UK students' use of multimodal representations in science. Students were asked to explain their understandings of the scientific concept and presentation of the multimodal representations in a science Assessing Pupils' Progress (APP) task. Participants of this study were fifty-four Year 7 students taught by the same teacher. Students from one class (27 students) were assigned to the experimental group, and then they received instruction encouraging the using of multimodal representations as evidences to support students' claims. One class (27 students) was assigned to the control group and they received instruction with traditional teaching methods. Both groups performed an APP task for assessment. The samples of APP assessments produced by students both from the experimental and control groups were analyzed using an analysis framework of multimodal representations, embeddedness in evidence and understanding of scientific concepts. Data analysis indicated that the students in the experimental group performed better than that of the control group on embeddedness of multimodal representations in the APP task. In addition, there was a significant difference between the two groups in the evaluation of understand of the scientific concepts.

The Level of Secondary School Science Teachers' PCK on Density and the Characteristics of Eight Aspects of CoRe by the Level of PCK (중등학교 과학 교사의 밀도에 관한 내용교수지식 수준과 그에 따른 내용 표상의 구성 요소별 특징)

  • Kwak, Sang-Won;Choi, Byung-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.128-136
    • /
    • 2012
  • The purposes of this study were to evaluate the level of PCK which middle school science teachers have on the concept of density and to analyze the characteristics of science teachers' content representation on the concept of density by their PCK level. For that purpose, 20 science teachers were selected and asked to answer the questionnaire on the eight aspects of CoRe. Results of this study indicated that the science teachers' PCK levels were low in general and evaluated as below average. The differences among the characteristics of science teachers' content representation by their PCK level were high in seven aspects of CoRe but the one aspect of the understanding of learner's preconception. These differences were analyzed and the patterns shown by the science teachers in eight aspects of CoRe were drawn in this study. It was also found that the characteristics drawn in eight aspects of content representation shown by the teachers whose PCK level was medium were close to those whose PCK level was low rather than high in most aspects of CoRe.

Types of Middle School Students' Conceptual Change on the Concept of Electrolyte and Ion (전해질과 이온 개념에 대한 중학생들의 개념변화 유형)

  • Shin, Sung-Hee;Park, Hyun Ju;Yang, Kiyull
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.48-58
    • /
    • 2016
  • This study was to investigate the types of middle school students’ conceptual change on electrolyte and ion. Data were collected by pre- and post- exams of 9th grade students’ conceptions of electrolyte and ion, and by semi-structured interviews with nine students served as case representatives who participated in the study. All interviews were transcribed, analyzed and classified by conceptual change according to the responses of the students. The results are as follows: First, students’ ion conceptual change was classified into four types; simple conception to sophisticated conception, incomplete conception to scientific conception, misconception to confused conception, and misconception to misconception. Most students had difficulty in understanding of the concepts of ion in pre- and post-class, and they failed to distinguish between atom and subatomic particles precisely. Second, students’ conceptual change of electrolyte was also classified into the following four types; partially scientific conception to sophisticated conception, misconception to partial misconception, incomplete conception to incomplete conception and misconception to misconception. The study found that students had difficulty distinguishing the difference between electrolytes and nonelectrolytes. Third, students also had difficulty understanding the concepts on particles because they learned the ‘electrolyte and ion’ unit so quickly in the second semester of 9th grade in order to fill in the academic reports for applying high schools. Furthermore, some suggestions were made based on the results for understanding scientific concepts on particles.

The Influences of Cognitive Conflict, Situational Interest, and Learning Process Variables on Conceptual Change in Cognitive onflict Strategy with an Alternative Hypothesis (대안가설이 도입된 인지갈등 전략에서 인지갈등 및 상황흥미와 학습 과정 변인이 개념변화에 미치는 영향)

  • Kang, Hun-Sik;Choi, Sook-Yeong;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.279-286
    • /
    • 2007
  • In this study, we investigated the influences of cognitive conflict and situational interest induced by a discrepant event and an alternative hypothesis, attention and state learning strategies on conceptual change. A preconception test was administered to 486 seventh graders. They also completed the questionnaires of cognitive response and situational interest to a discrepant event before/after presenting an alternative hypothesis. After learning the concept of density with a CAI program as conceptual change intervention, the tests of attention, state learning strategies, and conceptual understanding were administered as posttests. Analyses of the results for 197 students having misconceptions about density revealed that post-cognitive conflict was significantly higher than pre-cognitive conflict. However, there was no statistically significant difference between the test scores of pre-situational interest and post-situational interest. Pre-cognitive conflict only exerted a direct effect on post-cognitive conflict, while post-cognitive conflict exerted a direct effect and Journal of the Korean Chemical Society an indirect effect via attention on conceptual understanding. Both pre- and post-situational interests were found to influence on conceptual understanding via attention. Attention had influences positively on deep learning strategy and negatively on surface learning strategy. There was a relatively small effect of state learning strategies on conceptual understanding.

A Study on a Teacher's and Students' Perceptions of Learning Difficulties of the Chemical Bond Unit of the Chemistry II (화학II 화학결합 단원의 학습 어려움에 대한 학생과 교사의 인식 연구)

  • Ko, Ki-Hwan;Lee, Sun-Kyung;Kang, Kyung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.5
    • /
    • pp.447-458
    • /
    • 2007
  • The purpose of this study was to explore high school teacher's and students' perceptions of learning difficulties of the ‘chemical bond' unit of the Chemistry II in the 7th national curriculum. The participants in this study were consisted of a teacher and his students(85) from the Chemistry II classrooms: they all answered to the questionnaire, and then some students and the teacher were interviewed individually. The results showed that there were big differences between the teacher's and his students' perceptions of 1) the most difficult unit for understanding; 2) concepts they learned; and 3) the most difficult concept for understanding in the classroom. Students thought that electro-negativity unit was the most difficult to understand while teacher thought molecular structure unit was the hardest unit to teach. And teacher taught all 32 subjects of chemical bond unit to students, but some students could not remember they learned all of them. Most difficult parts for students to understand were ‘Coulomb force' and ‘dipole moment', while the most difficult part for the teacher to teach was ‘the conceptual difference between atomic bond and intermolecular force'. The reasons caused the students' learning difficulties were analyzed and discussed based on the interview data, and then further study was presented.