• Title/Summary/Keyword: chemistry concept understanding

Search Result 66, Processing Time 0.026 seconds

A Study of Pre-service Chemistry Teacher's Understanding on Entropy

  • Seo, Young-Jin;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.3
    • /
    • pp.415-427
    • /
    • 2012
  • In this study, we conducted preliminary survey, diagnostic test and in-depth interview in order to study Korean pre-service chemistry teachers' understanding on entropy and investigate how Korean pre-service chemistry teachers deal with the natural phenomenon which is related to entropy conceptions. Firstly, as a result of the preliminary survey, it was found that pre-service chemistry teachers strongly recognized entropy as the degree of disorder. Secondly, the diagnostic test showed pre-service chemistry teachers were mostly confused about whether the entropy of the universe increases during a spontaneous change, and they had a tendency to interpret the natural phenomenon related to entropy change as the change of disorder. Finally, during in-depth interview, after we explained entropy change in all diagnostic test questions with the concept of microstate, pre-service chemistry teachers revealed a better understanding about entropy. Through this research, pre-service chemistry teachers had an opportunity to reflect on their deficiencies of entropy conceptions, which will ultimately help students to approach the concept of entropy more correctly.

The Interactive Anonymous "Must-have" Quiz: A Simple Method to Enhance Students Concept Learning in Organic Chemistry Course

  • Cha, Jeongho;Kan, Su-Yin;Chia, Poh Wai
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.428-435
    • /
    • 2016
  • Effective mastering and learning of basic organic chemical concepts is pivotal to ensure students continue to excel to the higher levels of organic chemistry learning. Concept learning is crucial for first-year organic chemistry students so that they can comprehend and understand a concept better and able to make connection to problems. In the present paper, the authors have implemented the Interactive Anonymous Quiz (IAQ) with "must-have" features in the organic chemistry course as a teaching tool to instill students' interest and enhance conceptual understanding in organic chemistry. The effectiveness of this activity was examined and evaluated through students' reflective writing. Students showed positive learning outcome on the implemented activity as reflected by the reflective writings. In addition, this activity could be employed as an activity to check on students' concept understanding, to instill students' interest in organic chemistry course and to improve on students' weakest topic in organic chemistry in the future classes.

The Effect of Student-led Assessment on Students' Achievement Emotions and Science Concept Understanding in Middle School Science Class (중학교 과학 수업에서 학생주도평가가 성취정서와 과학개념이해에 미치는 영향)

  • Dajeong Yun;Jihun Park;Jeonghee Nam
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.253-270
    • /
    • 2023
  • The purpose of this study was to examine the effect of student-led assessment on achievement emotions and science concept understanding in middle school science classes. For this purpose, 4 of the 7 classes in the third grade of mid- dle school in small and medium-sized cities were selected as the experimental group and conducted student-led assessment, while the comparative group (3 classes) conducted teacher-led assessment. The student-led assessment consisted of 4 stages in which learners took initiative to set learning goals and develop assessment criteria, conduct self assessment and peer assess- ment, and carry out seven assessment activities. Student-led assessment was effective in improving positive achievement emotions and relieving negative achievement emotions and increasing students' science concept understanding in middle school students. Students perform student-led assessment, grasp their reach, and repeatedly go through reflective thinking to compensate for deficiencies in the learning process. Therefore, student-led assessment can be used as a tool to increase science concept understanding by continuously checking the level of science concept understanding.

The Effects of Formative Assessment-based Teaching and Learning Strategy on the Students' Science Concept Understanding, Motivation and Metacognitive Ability in Middle School (형성평가를 이용한 교수-학습 전략이 중학교 학생들의 과학개념 이해, 학습동기, 메타인지 능력에 미치는 영향)

Analysis of Preservice Chemistry Teachers' Modelling Ability and Perceptions in Science Writing for Audiences of General Chemistry Experiment Using Argument-based Modeling Strategy (논의-기반 모델링 전략을 이용한 일반화학실험에서 글쓰기 대상에 따른 예비화학교사들의 모델링 능력 및 모델링에 대한 인식 분석)

  • Cho, Hye Sook;Kim, HanYoung;Kang, Eugene;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.459-472
    • /
    • 2019
  • The purpose of this study was to investigate the effect of science writing for different audiences on preservice chemistry teachers' chemistry concept understanding and modeling ability in general chemistry experiment activities using Argument-based Modeling (AbM) strategy. And we also examined preservice chemistry teachers' perceptions of modeling in different audience groups. The participants of the study were 18 university students in the first grade of preservice chemistry teachers taking a general chemistry experiment course. They completed eleven topics of general chemistry experiment using argument-based modeling strategy. The understanding of chemistry concept was compared with the effect size of pre- and post-chemistry concept test scores. To find out modeling ability, we analyzed level of model by each preservice chemistry teacher. Analytical framework for the modeling ability was composed of three elements, explanation, representation, and communication. The questionnaire was conducted to check up on preservice chemistry teacher's recognition of modeling. The result of analyzing the effect of modeling for different audience on the understanding of chemistry concept and modeling ability, the preservice chemistry teachers' were found to be more effective when the level of audience was low. There was no difference in the recognition of modeling between the groups for audience. However, we could confirm that the responses of preservice chemistry teachers are changed in concrete when they have an experience in succession on modeling.

An Investigation of the Types of Student-Generated Analogies, the Mapping Understanding, and the Mapping Errors in Concept Learning on the Reaction Rate with Generating Analogy (비유 만들기를 활용한 반응속도 개념 학습에서 학생들이 만든 비유의 유형과 대응 관계 이해도 및 대응 오류 조사)

A Comparison of Middle and High School Students' Conceptual Understanding in Stoichiometry and Gas State (화학양론과 기체 상태에 대한 중.고등학생의 개념 이해도 비교)

  • Noh, Tae-Hee;Lim, Hee-Jun;Woo, Kyu-Whan
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.437-451
    • /
    • 1995
  • Middle and high school students' conceptual understanding about stoichiometry, gas laws, and diffusion was compared with essay type test and multiple choice test. Whereas achievement of high school students was higher in stoichiometry, that of middle school students who were expected to go to high schools was higher in gas laws and diffusion. When students' achievement was compared to that of American college students, Korean students' achievement was higher in stoichiometry and was similar in gas laws. These results indicate that algorithmic problem solving is more emphasized than conceptual understanding in high schools and that quantitative aspects focused in chemistry education are not helpful in concept understanding. Nevertheless relatively smaller difference between concept understanding and algorithmic problem solving for high school students in this study seems to be from concept learning in middle schools.

  • PDF

The Influences of the Role-playing Analogy in Chemistry Concept Learning on Mapping Understanding and Mapping Errors (화학 개념학습에서 역할놀이 비유가 대응 관계 이해도 및 대응 오류에 미치는 영향)

  • Kim, Kyung-Sun;Yang, Chan-Ho;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.898-909
    • /
    • 2009
  • In this study, we investigated the influences of the role-playing analogy in chemistry concept learning on mapping understanding and mapping errors by analogical reasoning ability level. Seventh-graders (N=151) at a middle school were assigned to the comparison group and the experimental group. The students of the experimental group were taught with the 'running in the circle' role-playing analogy. After the students were taught about 'the relation between volume and pressure of gas', the test of mapping understanding in the next class and the retention test four weeks later were administered. The students with typical mapping errors were also interviewed to investigate their mapping processes. The results revealed that the role-playing analogy in chemistry concept learning improved mapping understanding and its retention regardless of analogical reasoning ability level. It was also found that the students in the experimental group had fewer mapping errors than those in the comparison group. However, there were similar patterns of mapping errors in both groups, and there were no significant differences in the frequencies of each type of mapping errors by analogical reasoning ability level. Educational implication of these findings are discussed.

The Effects of Taking Elective Chemistry II Courses in High School on Understanding Concepts of Electrochemistry in General Chemistry: Focusing on Chemical Cell (고등학교 화학II 선택과목 이수가 대학 일반화학의 전기화학 관련 개념의 이해에 미치는 영향: 화학전지를 중심으로)

  • Yang, Hye-Ran;Lee, Sang Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.34-44
    • /
    • 2017
  • The purpose of this study was to analyze the conception type change and to investigate the effect of understanding on concepts in electrochemistry after general chemistry lessons. The significant differences in concept understanding of electrochemistry were shown in both groups. Statistically significant gains in both groups were as shown in distinguishing the chemical cell, in identifying the anode and cathode, and in understanding current formation and flow, while, significant achievements in understanding the role of the salt bridge, and the need for a standard half-cell were not found. Taking elective chemistry II in high school had an effect on understanding related concepts of electrochemistry in general chemistry lessons. It was shown that many freshmen had difficulties in understanding exact related concepts in several kinds after general chemistry lessons. In order to solve these problems, it is necessary to teach contents of the basic concepts in electrochemistry exactly and to hold supplementary lessons.

First Year Undergraduate Students' Difficulties with Ball-and-stick Molecular Models

  • Chue, Shien;Kim, Chwee;Tan, Daniel
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.6
    • /
    • pp.477-487
    • /
    • 2007
  • Previous studies show that students have difficulties in understanding and using molecular visualization tools. This study focuses on the ways in which first year chemistry undergraduates use ball-and-stick molecular models to explain the concept of addition reaction and the difficulties that they face using the models. Video recordings of interviews with undergraduates manipulating ball-and-stick models to solve problems related to reaction mechanisms are analysed to determine if they are able to elucidate their understanding with use of models. The results showed that students have difficulties with viewing the ball-and-stick models from the proper perspective and understanding the relationship between the various structures that they have created using the models. They also find the use of ball-and-stick models tedious and prefer drawing molecular structures on paper to explain their ideas. Implications for the teaching using ball-and-stick molecular models are discussed.