• Title/Summary/Keyword: chemical vapor transport

Search Result 117, Processing Time 0.027 seconds

Hall Effect of FeSi$_2$ Thin Film by Magnetic Field (FeSi$_2$박막 흘 효과의 자계의존성)

  • 이우선;김형곤;김남오;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.234-237
    • /
    • 2001
  • FeSi$_2$/Si Layer were grown using FeSi$_2$, Si wafer by the chemical transport reaction method. The directoptical energy gap was found to be 0.871ev at 300 K. The Hall effect is a physical effect arising in matter carrying electric current in the presence of a magnetic field. The effect is named after the American physicist E. H. Hall, who discovered it in 1879. In this paper, we study electrical properties of FeSi$_2$/Si layer And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important Part for it application Various phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

Hall Effect of $FeSi_2$ Thin Film by Temperature ($FeSi_2$박막 홀 효과의 온도의존성)

  • 이우선;김형곤;김남오;정헌상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.230-233
    • /
    • 2001
  • FeSi$_2$ Layer were grown using FeSi$_2$, Si wafer by the chemical transport reaction method. The directoptical energy gap was found to be 0.87leV at 300 K. The Hall effect is a Physical effect arising in matter carrying electric current in the presence of a magnetic field. The effect is named after the American physicist E.H. Hall, who discovered it in 1879. In this paper, we study electrical properties of FeSi$_2$/Si layer. And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important part for it application various phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF

Atomic Force Microscopy Study on Correlation between Electrical Transport and Nanomechanical properties of Graphene Layer

  • Kwon, Sang-Ku;Choi, Sung-Hyun;Chung, H.J.;Seo, S.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.85-85
    • /
    • 2010
  • Graphene, the building block of graphite, is one of the most promising materials due to their fascinating electronic transport properties. The pseudo-two-dimensional sp2 bonding in graphene layers yields one of the most effective solid lubricants. In this poster, we present the correlation between electrical and nanomechanical properties of graphene layer grown on Cu/Ni substrate with CVD (Chemical Vapor Deposition) method. The electrical (current and conductance) and nanomechanical (adhesion and friction) properties have been investigated by the combined apparatus of friction force microscopy/conductive probe atomic force microscopy (AFM). The experiment was carried out in a RHK AFM operating in ultrahigh vacuum using cantilevers with a conductive TiN coating. The current was measured as a function of the applied load between the AFM tip and the graphene layer. The contact area has been obtained with the continuum mechanical models. We will discuss the influence of mechanical deformation on the electrical transport mechanism on graphene layers.

  • PDF

Synthesis and Properties of Two Dimensional Doped Transition Metal Dichalcogenides

  • Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Since graphene was discovered in 2004, two-dimensional (2D) materials have been actively studied. Especially, 2D transition metal dichalcogenides (TMDs), such as $MoS_2$ and $WS_2$, have been the subject of significant research because of their exceptional optical, electrical, magnetic, catalytic, and morphological properties. Therefore, these materials are expected to be used in a variety of applications. Furthermore, tuning the properties of TMDs is essential to improve their performance and expand their applications. This review classifies the various doping methods of 2D TMDs, and it summarizes how the dopants interact with the materials and how the performance of the materials improves depending on the synthesis methods and the species of the dopants.

Effects of convection on physical vapor transport of Hg2Cl2 in the presence of Kr - Part I: under microgravity environments

  • Lee, Yong Keun;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under microgravity environments less than 1 $g_0$ exhibits a diffusive-convection mode and much uniformity in front of the crystal regions than a normal gravity acceleration of 1 $g_0$. The total molar fluxes show asymmetrical patterns in interfacial distribution, which indicates the occurrence of either one single or more than one convective cell. As the gravitational level decreases form 1 $g_0$ down to $1.0{\times}10^{-4}\;g_0$, the intensity of convection, indicative of the maximum molar fluxes, is reduced significantly for ${\Delta}T=30K$ and 90 K. The total molar fluxes decay first order exponentially with the partial pressure of component B, PB (Torr) for 20 Torr ${\leq}PB{\leq}$ 300 Torr, and two gravity accelerations of $g_y=1\;g_0$ and 0.1 $g_0$.

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS (MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조)

  • Jo, Tae Sun;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

The Characteristices of the 4,4',4'-trifluoro-triazine as a hole Blocking Material in Electroluminescent Devices (전계발광 소자에서 정공 차단 물질로서의 4,4',4'-trifluoro-triazine의 특성)

  • Shin, Ji-Won;Shin, Dong-Muyng;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.120-125
    • /
    • 2000
  • The tfTZ(4,4',4''-trifluoro-triazine) was used as a hole blocking material for the electroluminescent devices(ELDs) in this study. In general, the holes are outnumbered the electrons in hole transport and emitting layers because the hole transport is more efficient in most organic ELDs. The hole blocking layer are expected to control the excess holes to increase the recombination of holes and electrons and to decrease current density. The former study using the 2,4,6-triphenyl-1,3,5-triazine(TTA) as hole blocking layer showed that the TTA did not form stable films with vapor deposition technique. The tfTZ can generate stable evaporated films, moreover the fluorine group can lower the highest occupied molecular orbital(HOMO) level, which produces the energy barrier for the holes. The tfTZ has high electron affinities according to the data by the Cyclic-Voltammety(CV) method, which is developed for the measurement of HOMO and lowest occupied molecular orbital(LUMO) level of organic thin films. The lowered HOMO level is made the tfTZ to be applied for a hole blocking layer in ELDs. We fabricated multilayer ELDs with a structure of ITO/hole blocking layer(HBL)/hole transporting layer(HTL)/emitting layer/electrode. The hole blocking properties of this devices is confirmed from the lowered current density values compared with that without hole blocking layer.

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Yoon, Ha-Na;Yoo, Young-Dong;Seo, Kwan-Yong;In, June-Ho;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2830-2844
    • /
    • 2012
  • This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.